js8call/.svn/pristine/a4/a49528646b804ab9db7c2464fd6c321a3a04a1b8.svn-base
2018-02-08 21:28:33 -05:00

416 lines
16 KiB
Plaintext

/*
[auto_generated]
boost/numeric/odeint/stepper/base/explicit_stepper_base.hpp
[begin_description]
Base class for all explicit Runge Kutta steppers.
[end_description]
Copyright 2010-2013 Karsten Ahnert
Copyright 2010-2012 Mario Mulansky
Copyright 2012 Christoph Koke
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/numeric/odeint/util/bind.hpp>
#include <boost/numeric/odeint/util/unwrap_reference.hpp>
#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>
#include <boost/numeric/odeint/util/is_resizeable.hpp>
#include <boost/numeric/odeint/stepper/stepper_categories.hpp>
#include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>
namespace boost {
namespace numeric {
namespace odeint {
/*
* base class for explicit steppers
* models the stepper concept
*
* this class provides the following overloads
* do_step( sys , x , t , dt )
* do_step( sys , in , t , out , dt )
* do_step( sys , x , dxdt_in , t , dt )
* do_step( sys , in , dxdt_in , t , out , dt )
*/
template<
class Stepper ,
unsigned short Order ,
class State ,
class Value ,
class Deriv ,
class Time ,
class Algebra ,
class Operations ,
class Resizer
>
class explicit_stepper_base : public algebra_stepper_base< Algebra , Operations >
{
public:
#ifndef DOXYGEN_SKIP
typedef explicit_stepper_base< Stepper , Order , State , Value , Deriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type;
#endif // DOXYGEN_SKIP
typedef State state_type;
typedef Value value_type;
typedef Deriv deriv_type;
typedef Time time_type;
typedef Resizer resizer_type;
typedef Stepper stepper_type;
typedef stepper_tag stepper_category;
typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
typedef typename algebra_stepper_base_type::algebra_type algebra_type;
typedef typename algebra_stepper_base_type::operations_type operations_type;
typedef unsigned short order_type;
#ifndef DOXYGEN_SKIP
typedef state_wrapper< state_type > wrapped_state_type;
typedef state_wrapper< deriv_type > wrapped_deriv_type;
#endif // DOXYGEN_SKIP
static const order_type order_value = Order;
explicit_stepper_base( const algebra_type &algebra = algebra_type() )
: algebra_stepper_base_type( algebra )
{ }
/**
* \return Returns the order of the stepper.
*/
order_type order( void ) const
{
return order_value;
}
/*
* Version 1 : do_step( sys , x , t , dt )
*
* the two overloads are needed in order to solve the forwarding problem
*/
template< class System , class StateInOut >
void do_step( System system , StateInOut &x , time_type t , time_type dt )
{
do_step_v1( system , x , t , dt );
}
/**
* \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
*/
template< class System , class StateInOut >
void do_step( System system , const StateInOut &x , time_type t , time_type dt )
{
do_step_v1( system , x , t , dt );
}
/*
* Version 2 : do_step( sys , x , dxdt , t , dt )
*
* this version does not solve the forwarding problem, boost.range can not be used
*
* the disable is needed to avoid ambiguous overloads if state_type = time_type
*/
template< class System , class StateInOut , class DerivIn >
typename boost::disable_if< boost::is_same< DerivIn , time_type > , void >::type
do_step( System system , StateInOut &x , const DerivIn &dxdt , time_type t , time_type dt )
{
this->stepper().do_step_impl( system , x , dxdt , t , x , dt );
}
/*
* named Version 2: do_step_dxdt_impl( sys , in , dxdt , t , dt )
*
* this version is needed when this stepper is used for initializing
* multistep stepper like adams-bashforth. Hence we provide an explicitely
* named version that is not disabled. Meant for internal use only.
*/
template < class System, class StateInOut, class DerivIn >
void do_step_dxdt_impl( System system, StateInOut &x, const DerivIn &dxdt,
time_type t, time_type dt )
{
this->stepper().do_step_impl( system , x , dxdt , t , x , dt );
}
/*
* Version 3 : do_step( sys , in , t , out , dt )
*
* this version does not solve the forwarding problem, boost.range can not be used
*/
template< class System , class StateIn , class StateOut >
void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
{
typename odeint::unwrap_reference< System >::type &sys = system;
m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl<StateIn> , detail::ref( *this ) , detail::_1 ) );
sys( in , m_dxdt.m_v ,t );
this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , dt );
}
/*
* Version 4 : do_step( sys , in , dxdt , t , out , dt )
*
* this version does not solve the forwarding problem, boost.range can not be used
*/
template< class System , class StateIn , class DerivIn , class StateOut >
void do_step( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
{
this->stepper().do_step_impl( system , in , dxdt , t , out , dt );
}
/*
* named Version 4: do_step_dxdt_impl( sys , in , dxdt , t , out, dt )
*
* this version is needed when this stepper is used for initializing
* multistep stepper like adams-bashforth. Hence we provide an explicitely
* named version. Meant for internal use only.
*/
template < class System, class StateIn, class DerivIn, class StateOut >
void do_step_dxdt_impl( System system, const StateIn &in,
const DerivIn &dxdt, time_type t, StateOut &out,
time_type dt )
{
this->stepper().do_step_impl( system , in , dxdt , t , out , dt );
}
template< class StateIn >
void adjust_size( const StateIn &x )
{
resize_impl( x );
}
private:
stepper_type& stepper( void )
{
return *static_cast< stepper_type* >( this );
}
const stepper_type& stepper( void ) const
{
return *static_cast< const stepper_type* >( this );
}
template< class StateIn >
bool resize_impl( const StateIn &x )
{
return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
}
template< class System , class StateInOut >
void do_step_v1( System system , StateInOut &x , time_type t , time_type dt )
{
typename odeint::unwrap_reference< System >::type &sys = system;
m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) );
sys( x , m_dxdt.m_v ,t );
this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , dt );
}
resizer_type m_resizer;
protected:
wrapped_deriv_type m_dxdt;
};
/******* DOXYGEN *********/
/**
* \class explicit_stepper_base
* \brief Base class for explicit steppers without step size control and without dense output.
*
* This class serves as the base class for all explicit steppers with algebra and operations.
* Step size control and error estimation as well as dense output are not provided. explicit_stepper_base
* is used as the interface in a CRTP (currently recurring template pattern). In order to work
* correctly the parent class needs to have a method `do_step_impl( system , in , dxdt_in , t , out , dt )`.
* This is method is used by explicit_stepper_base. explicit_stepper_base derives from
* algebra_stepper_base. An example how this class can be used is
*
* \code
* template< class State , class Value , class Deriv , class Time , class Algebra , class Operations , class Resizer >
* class custom_euler : public explicit_stepper_base< 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer >
* {
* public:
*
* typedef explicit_stepper_base< 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > base_type;
*
* custom_euler( const Algebra &algebra = Algebra() ) { }
*
* template< class Sys , class StateIn , class DerivIn , class StateOut >
* void do_step_impl( Sys sys , const StateIn &in , const DerivIn &dxdt , Time t , StateOut &out , Time dt )
* {
* m_algebra.for_each3( out , in , dxdt , Operations::scale_sum2< Value , Time >( 1.0 , dt );
* }
*
* template< class State >
* void adjust_size( const State &x )
* {
* base_type::adjust_size( x );
* }
* };
* \endcode
*
* For the Stepper concept only the `do_step( sys , x , t , dt )` needs to be implemented. But this class
* provides additional `do_step` variants since the stepper is explicit. These methods can be used to increase
* the performance in some situation, for example if one needs to analyze `dxdt` during each step. In this case
* one can use
*
* \code
* sys( x , dxdt , t );
* stepper.do_step( sys , x , dxdt , t , dt ); // the value of dxdt is used here
* t += dt;
* \endcode
*
* In detail explicit_stepper_base provides the following `do_step` variants
* - `do_step( sys , x , t , dt )` - The classical `do_step` method needed to fulfill the Stepper concept. The state is updated in-place.
* A type modelling a Boost.Range can be used for x.
* - `do_step( sys , in , t , out , dt )` - This method updates the state out-of-place, hence the result of the step is stored in `out`.
* - `do_step( sys , x , dxdt , t , dt )` - This method updates the state in-place, but the derivative at the point `t` must be
* explicitly passed in `dxdt`. For an example see the code snippet above.
* - `do_step( sys , in , dxdt , t , out , dt )` - This method update the state out-of-place and expects that the derivative at the point
* `t` is explicitly passed in `dxdt`. It is a combination of the two `do_step` methods above.
*
* \note The system is always passed as value, which might result in poor performance if it contains data. In this case it can be used with `boost::ref`
* or `std::ref`, for example `stepper.do_step( boost::ref( sys ) , x , t , dt );`
*
* \note The time `t` is not advanced by the stepper. This has to done manually, or by the appropriate `integrate` routines or `iterator`s.
*
* \tparam Stepper The stepper on which this class should work. It is used via CRTP, hence explicit_stepper_base
* provides the interface for the Stepper.
* \tparam Order The order of the stepper.
* \tparam State The state type for the stepper.
* \tparam Value The value type for the stepper. This should be a floating point type, like float,
* double, or a multiprecision type. It must not necessary be the value_type of the State. For example
* the State can be a `vector< complex< double > >` in this case the Value must be double.
* The default value is double.
* \tparam Deriv The type representing time derivatives of the state type. It is usually the same type as the
* state type, only if used with Boost.Units both types differ.
* \tparam Time The type representing the time. Usually the same type as the value type. When Boost.Units is
* used, this type has usually a unit.
* \tparam Algebra The algebra type which must fulfill the Algebra Concept.
* \tparam Operations The type for the operations which must fulfill the Operations Concept.
* \tparam Resizer The resizer policy class.
*/
/**
* \fn explicit_stepper_base::explicit_stepper_base( const algebra_type &algebra )
* \brief Constructs a explicit_stepper_base class. This constructor can be used as a default
* constructor if the algebra has a default constructor.
* \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
*/
/**
* \fn explicit_stepper_base::order_type order( void ) const
* \return Returns the order of the stepper.
*/
/**
* \fn explicit_stepper_base::do_step( System system , StateInOut &x , time_type t , time_type dt )
* \brief This method performs one step. It transforms the result in-place.
*
* \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
*/
/**
* \fn explicit_stepper_base::do_step( System system , StateInOut &x , const DerivIn &dxdt , time_type t , time_type dt )
* \brief The method performs one step. Additionally to the other method
* the derivative of x is also passed to this method. It is supposed to be used in the following way:
*
* \code
* sys( x , dxdt , t );
* stepper.do_step( sys , x , dxdt , t , dt );
* \endcode
*
* The result is updated in place in x. This method is disabled if Time and Deriv are of the same type. In this
* case the method could not be distinguished from other `do_step` versions.
*
* \note This method does not solve the forwarding problem.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param dxdt The derivative of x at t.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
*/
/**
* \fn void explicit_stepper_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
* \brief The method performs one step. The state of the ODE is updated out-of-place.
* \note This method does not solve the forwarding problem.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dt The step size.
*/
/**
* \fn void explicit_stepper_base::do_step( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
* \brief The method performs one step. The state of the ODE is updated out-of-place.
* Furthermore, the derivative of x at t is passed to the stepper.
* It is supposed to be used in the following way:
*
* \code
* sys( in , dxdt , t );
* stepper.do_step( sys , in , dxdt , t , out , dt );
* \endcode
*
* \note This method does not solve the forwarding problem.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param dxdt The derivative of x at t.
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dt The step size.
*/
/**
* \fn void explicit_stepper_base::adjust_size( const StateIn &x )
* \brief Adjust the size of all temporaries in the stepper manually.
* \param x A state from which the size of the temporaries to be resized is deduced.
*/
} // odeint
} // numeric
} // boost
#endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED