262 lines
7.3 KiB
Plaintext
262 lines
7.3 KiB
Plaintext
// Copyright (c) 2011 John Maddock
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_MATH_BESSEL_JN_SERIES_HPP
|
|
#define BOOST_MATH_BESSEL_JN_SERIES_HPP
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma once
|
|
#endif
|
|
|
|
namespace boost { namespace math { namespace detail{
|
|
|
|
template <class T, class Policy>
|
|
struct bessel_j_small_z_series_term
|
|
{
|
|
typedef T result_type;
|
|
|
|
bessel_j_small_z_series_term(T v_, T x)
|
|
: N(0), v(v_)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
mult = x / 2;
|
|
mult *= -mult;
|
|
term = 1;
|
|
}
|
|
T operator()()
|
|
{
|
|
T r = term;
|
|
++N;
|
|
term *= mult / (N * (N + v));
|
|
return r;
|
|
}
|
|
private:
|
|
unsigned N;
|
|
T v;
|
|
T mult;
|
|
T term;
|
|
};
|
|
//
|
|
// Series evaluation for BesselJ(v, z) as z -> 0.
|
|
// See http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/06/01/04/01/01/0003/
|
|
// Converges rapidly for all z << v.
|
|
//
|
|
template <class T, class Policy>
|
|
inline T bessel_j_small_z_series(T v, T x, const Policy& pol)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
T prefix;
|
|
if(v < max_factorial<T>::value)
|
|
{
|
|
prefix = pow(x / 2, v) / boost::math::tgamma(v+1, pol);
|
|
}
|
|
else
|
|
{
|
|
prefix = v * log(x / 2) - boost::math::lgamma(v+1, pol);
|
|
prefix = exp(prefix);
|
|
}
|
|
if(0 == prefix)
|
|
return prefix;
|
|
|
|
bessel_j_small_z_series_term<T, Policy> s(v, x);
|
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
|
|
T zero = 0;
|
|
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, zero);
|
|
#else
|
|
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
|
|
#endif
|
|
policies::check_series_iterations<T>("boost::math::bessel_j_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
|
|
return prefix * result;
|
|
}
|
|
|
|
template <class T, class Policy>
|
|
struct bessel_y_small_z_series_term_a
|
|
{
|
|
typedef T result_type;
|
|
|
|
bessel_y_small_z_series_term_a(T v_, T x)
|
|
: N(0), v(v_)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
mult = x / 2;
|
|
mult *= -mult;
|
|
term = 1;
|
|
}
|
|
T operator()()
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
T r = term;
|
|
++N;
|
|
term *= mult / (N * (N - v));
|
|
return r;
|
|
}
|
|
private:
|
|
unsigned N;
|
|
T v;
|
|
T mult;
|
|
T term;
|
|
};
|
|
|
|
template <class T, class Policy>
|
|
struct bessel_y_small_z_series_term_b
|
|
{
|
|
typedef T result_type;
|
|
|
|
bessel_y_small_z_series_term_b(T v_, T x)
|
|
: N(0), v(v_)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
mult = x / 2;
|
|
mult *= -mult;
|
|
term = 1;
|
|
}
|
|
T operator()()
|
|
{
|
|
T r = term;
|
|
++N;
|
|
term *= mult / (N * (N + v));
|
|
return r;
|
|
}
|
|
private:
|
|
unsigned N;
|
|
T v;
|
|
T mult;
|
|
T term;
|
|
};
|
|
//
|
|
// Series form for BesselY as z -> 0,
|
|
// see: http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/06/01/04/01/01/0003/
|
|
// This series is only useful when the second term is small compared to the first
|
|
// otherwise we get catestrophic cancellation errors.
|
|
//
|
|
// Approximating tgamma(v) by v^v, and assuming |tgamma(-z)| < eps we end up requiring:
|
|
// eps/2 * v^v(x/2)^-v > (x/2)^v or log(eps/2) > v log((x/2)^2/v)
|
|
//
|
|
template <class T, class Policy>
|
|
inline T bessel_y_small_z_series(T v, T x, T* pscale, const Policy& pol)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
static const char* function = "bessel_y_small_z_series<%1%>(%1%,%1%)";
|
|
T prefix;
|
|
T gam;
|
|
T p = log(x / 2);
|
|
T scale = 1;
|
|
bool need_logs = (v >= max_factorial<T>::value) || (tools::log_max_value<T>() / v < fabs(p));
|
|
if(!need_logs)
|
|
{
|
|
gam = boost::math::tgamma(v, pol);
|
|
p = pow(x / 2, v);
|
|
if(tools::max_value<T>() * p < gam)
|
|
{
|
|
scale /= gam;
|
|
gam = 1;
|
|
if(tools::max_value<T>() * p < gam)
|
|
{
|
|
return -policies::raise_overflow_error<T>(function, 0, pol);
|
|
}
|
|
}
|
|
prefix = -gam / (constants::pi<T>() * p);
|
|
}
|
|
else
|
|
{
|
|
gam = boost::math::lgamma(v, pol);
|
|
p = v * p;
|
|
prefix = gam - log(constants::pi<T>()) - p;
|
|
if(tools::log_max_value<T>() < prefix)
|
|
{
|
|
prefix -= log(tools::max_value<T>() / 4);
|
|
scale /= (tools::max_value<T>() / 4);
|
|
if(tools::log_max_value<T>() < prefix)
|
|
{
|
|
return -policies::raise_overflow_error<T>(function, 0, pol);
|
|
}
|
|
}
|
|
prefix = -exp(prefix);
|
|
}
|
|
bessel_y_small_z_series_term_a<T, Policy> s(v, x);
|
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
|
|
*pscale = scale;
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
|
|
T zero = 0;
|
|
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, zero);
|
|
#else
|
|
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
|
|
#endif
|
|
policies::check_series_iterations<T>("boost::math::bessel_y_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
|
|
result *= prefix;
|
|
|
|
if(!need_logs)
|
|
{
|
|
prefix = boost::math::tgamma(-v, pol) * boost::math::cos_pi(v) * p / constants::pi<T>();
|
|
}
|
|
else
|
|
{
|
|
int sgn;
|
|
prefix = boost::math::lgamma(-v, &sgn, pol) + p;
|
|
prefix = exp(prefix) * sgn / constants::pi<T>();
|
|
}
|
|
bessel_y_small_z_series_term_b<T, Policy> s2(v, x);
|
|
max_iter = policies::get_max_series_iterations<Policy>();
|
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
|
|
T b = boost::math::tools::sum_series(s2, boost::math::policies::get_epsilon<T, Policy>(), max_iter, zero);
|
|
#else
|
|
T b = boost::math::tools::sum_series(s2, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
|
|
#endif
|
|
result -= scale * prefix * b;
|
|
return result;
|
|
}
|
|
|
|
template <class T, class Policy>
|
|
T bessel_yn_small_z(int n, T z, T* scale, const Policy& pol)
|
|
{
|
|
//
|
|
// See http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/06/01/04/01/02/
|
|
//
|
|
// Note that when called we assume that x < epsilon and n is a positive integer.
|
|
//
|
|
BOOST_MATH_STD_USING
|
|
BOOST_ASSERT(n >= 0);
|
|
BOOST_ASSERT((z < policies::get_epsilon<T, Policy>()));
|
|
|
|
if(n == 0)
|
|
{
|
|
return (2 / constants::pi<T>()) * (log(z / 2) + constants::euler<T>());
|
|
}
|
|
else if(n == 1)
|
|
{
|
|
return (z / constants::pi<T>()) * log(z / 2)
|
|
- 2 / (constants::pi<T>() * z)
|
|
- (z / (2 * constants::pi<T>())) * (1 - 2 * constants::euler<T>());
|
|
}
|
|
else if(n == 2)
|
|
{
|
|
return (z * z) / (4 * constants::pi<T>()) * log(z / 2)
|
|
- (4 / (constants::pi<T>() * z * z))
|
|
- ((z * z) / (8 * constants::pi<T>())) * (T(3)/2 - 2 * constants::euler<T>());
|
|
}
|
|
else
|
|
{
|
|
T p = pow(z / 2, n);
|
|
T result = -((boost::math::factorial<T>(n - 1) / constants::pi<T>()));
|
|
if(p * tools::max_value<T>() < result)
|
|
{
|
|
T div = tools::max_value<T>() / 8;
|
|
result /= div;
|
|
*scale /= div;
|
|
if(p * tools::max_value<T>() < result)
|
|
{
|
|
return -policies::raise_overflow_error<T>("bessel_yn_small_z<%1%>(%1%,%1%)", 0, pol);
|
|
}
|
|
}
|
|
return result / p;
|
|
}
|
|
}
|
|
|
|
}}} // namespaces
|
|
|
|
#endif // BOOST_MATH_BESSEL_JN_SERIES_HPP
|
|
|