js8call/.svn/pristine/f9/f90db5e2bd084bcce3c2cae67eb878ed45b1439e.svn-base
2018-02-08 21:28:33 -05:00

542 lines
24 KiB
Plaintext

//---------------------------------------------------------------------------//
// Copyright (c) 2015 Jakub Szuppe <j.szuppe@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP
#define BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP
#include <algorithm>
#include <iterator>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/functional.hpp>
#include <boost/compute/algorithm/inclusive_scan.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/container/detail/scalar.hpp>
#include <boost/compute/detail/meta_kernel.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/detail/read_write_single_value.hpp>
#include <boost/compute/type_traits.hpp>
#include <boost/compute/utility/program_cache.hpp>
namespace boost {
namespace compute {
namespace detail {
/// \internal_
///
/// Fills \p new_keys_first with unsigned integer keys generated from vector
/// of original keys \p keys_first. New keys can be distinguish by simple equality
/// predicate.
///
/// \param keys_first iterator pointing to the first key
/// \param number_of_keys number of keys
/// \param predicate binary predicate for key comparison
/// \param new_keys_first iterator pointing to the new keys vector
/// \param preferred_work_group_size preferred work group size
/// \param queue command queue to perform the operation
///
/// Binary function \p predicate must take two keys as arguments and
/// return true only if they are considered the same.
///
/// The first new key equals zero and the last equals number of unique keys
/// minus one.
///
/// No local memory usage.
template<class InputKeyIterator, class BinaryPredicate>
inline void generate_uint_keys(InputKeyIterator keys_first,
size_t number_of_keys,
BinaryPredicate predicate,
vector<uint_>::iterator new_keys_first,
size_t preferred_work_group_size,
command_queue &queue)
{
typedef typename
std::iterator_traits<InputKeyIterator>::value_type key_type;
detail::meta_kernel k("reduce_by_key_new_key_flags");
k.add_set_arg<const uint_>("count", uint_(number_of_keys));
k <<
k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
k.decl<uint_>("value") << " = 0;\n" <<
"if(gid >= count){\n return;\n}\n" <<
"if(gid > 0){ \n" <<
k.decl<key_type>("key") << " = " <<
keys_first[k.var<const uint_>("gid")] << ";\n" <<
k.decl<key_type>("previous_key") << " = " <<
keys_first[k.var<const uint_>("gid - 1")] << ";\n" <<
" value = " << predicate(k.var<key_type>("previous_key"),
k.var<key_type>("key")) <<
" ? 0 : 1;\n" <<
"}\n else {\n" <<
" value = 0;\n" <<
"}\n" <<
new_keys_first[k.var<const uint_>("gid")] << " = value;\n";
const context &context = queue.get_context();
kernel kernel = k.compile(context);
size_t work_group_size = preferred_work_group_size;
size_t work_groups_no = static_cast<size_t>(
std::ceil(float(number_of_keys) / work_group_size)
);
queue.enqueue_1d_range_kernel(kernel,
0,
work_groups_no * work_group_size,
work_group_size);
inclusive_scan(new_keys_first, new_keys_first + number_of_keys,
new_keys_first, queue);
}
/// \internal_
/// Calculate carry-out for each work group.
/// Carry-out is a pair of the last key processed by a work group and sum of all
/// values under this key in this work group.
template<class InputValueIterator, class OutputValueIterator, class BinaryFunction>
inline void carry_outs(vector<uint_>::iterator keys_first,
InputValueIterator values_first,
size_t count,
vector<uint_>::iterator carry_out_keys_first,
OutputValueIterator carry_out_values_first,
BinaryFunction function,
size_t work_group_size,
command_queue &queue)
{
typedef typename
std::iterator_traits<OutputValueIterator>::value_type value_out_type;
detail::meta_kernel k("reduce_by_key_with_scan_carry_outs");
k.add_set_arg<const uint_>("count", uint_(count));
size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys");
size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals");
k <<
k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" <<
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
k.decl<const uint_>("group_id") << " = get_group_id(0);\n" <<
k.decl<uint_>("key") << ";\n" <<
k.decl<value_out_type>("value") << ";\n" <<
"if(gid < count){\n" <<
k.var<uint_>("key") << " = " <<
keys_first[k.var<const uint_>("gid")] << ";\n" <<
k.var<value_out_type>("value") << " = " <<
values_first[k.var<const uint_>("gid")] << ";\n" <<
"lkeys[lid] = key;\n" <<
"lvals[lid] = value;\n" <<
"}\n" <<
// Calculate carry out for each work group by performing Hillis/Steele scan
// where only last element (key-value pair) is saved
k.decl<value_out_type>("result") << " = value;\n" <<
k.decl<uint_>("other_key") << ";\n" <<
k.decl<value_out_type>("other_value") << ";\n" <<
"for(" << k.decl<uint_>("offset") << " = 1; " <<
"offset < wg_size; offset *= 2){\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
" if(lid >= offset){\n"
" other_key = lkeys[lid - offset];\n" <<
" if(other_key == key){\n" <<
" other_value = lvals[lid - offset];\n" <<
" result = " << function(k.var<value_out_type>("result"),
k.var<value_out_type>("other_value")) << ";\n" <<
" }\n" <<
" }\n" <<
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
" lvals[lid] = result;\n" <<
"}\n" <<
// save carry out
"if(lid == (wg_size - 1)){\n" <<
carry_out_keys_first[k.var<const uint_>("group_id")] << " = key;\n" <<
carry_out_values_first[k.var<const uint_>("group_id")] << " = result;\n" <<
"}\n";
size_t work_groups_no = static_cast<size_t>(
std::ceil(float(count) / work_group_size)
);
const context &context = queue.get_context();
kernel kernel = k.compile(context);
kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size));
kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size));
queue.enqueue_1d_range_kernel(kernel,
0,
work_groups_no * work_group_size,
work_group_size);
}
/// \internal_
/// Calculate carry-in by performing inclusive scan by key on carry-outs vector.
template<class OutputValueIterator, class BinaryFunction>
inline void carry_ins(vector<uint_>::iterator carry_out_keys_first,
OutputValueIterator carry_out_values_first,
OutputValueIterator carry_in_values_first,
size_t carry_out_size,
BinaryFunction function,
size_t work_group_size,
command_queue &queue)
{
typedef typename
std::iterator_traits<OutputValueIterator>::value_type value_out_type;
uint_ values_pre_work_item = static_cast<uint_>(
std::ceil(float(carry_out_size) / work_group_size)
);
detail::meta_kernel k("reduce_by_key_with_scan_carry_ins");
k.add_set_arg<const uint_>("carry_out_size", uint_(carry_out_size));
k.add_set_arg<const uint_>("values_per_work_item", values_pre_work_item);
size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys");
size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals");
k <<
k.decl<uint_>("id") << " = get_global_id(0) * values_per_work_item;\n" <<
k.decl<uint_>("idx") << " = id;\n" <<
k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" <<
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
k.decl<const uint_>("group_id") << " = get_group_id(0);\n" <<
k.decl<uint_>("key") << ";\n" <<
k.decl<value_out_type>("value") << ";\n" <<
k.decl<uint_>("previous_key") << ";\n" <<
k.decl<value_out_type>("result") << ";\n" <<
"if(id < carry_out_size){\n" <<
k.var<uint_>("previous_key") << " = " <<
carry_out_keys_first[k.var<const uint_>("id")] << ";\n" <<
k.var<value_out_type>("result") << " = " <<
carry_out_values_first[k.var<const uint_>("id")] << ";\n" <<
carry_in_values_first[k.var<const uint_>("id")] << " = result;\n" <<
"}\n" <<
k.decl<const uint_>("end") << " = (id + values_per_work_item) <= carry_out_size" <<
" ? (values_per_work_item + id) : carry_out_size;\n" <<
"for(idx = idx + 1; idx < end; idx += 1){\n" <<
" key = " << carry_out_keys_first[k.var<const uint_>("idx")] << ";\n" <<
" value = " << carry_out_values_first[k.var<const uint_>("idx")] << ";\n" <<
" if(previous_key == key){\n" <<
" result = " << function(k.var<value_out_type>("result"),
k.var<value_out_type>("value")) << ";\n" <<
" }\n else { \n" <<
" result = value;\n"
" }\n" <<
" " << carry_in_values_first[k.var<const uint_>("idx")] << " = result;\n" <<
" previous_key = key;\n"
"}\n" <<
// save the last key and result to local memory
"lkeys[lid] = previous_key;\n" <<
"lvals[lid] = result;\n" <<
// Hillis/Steele scan
"for(" << k.decl<uint_>("offset") << " = 1; " <<
"offset < wg_size; offset *= 2){\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
" if(lid >= offset){\n"
" key = lkeys[lid - offset];\n" <<
" if(previous_key == key){\n" <<
" value = lvals[lid - offset];\n" <<
" result = " << function(k.var<value_out_type>("result"),
k.var<value_out_type>("value")) << ";\n" <<
" }\n" <<
" }\n" <<
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
" lvals[lid] = result;\n" <<
"}\n" <<
"barrier(CLK_LOCAL_MEM_FENCE);\n" <<
"if(lid > 0){\n" <<
// load key-value reduced by previous work item
" previous_key = lkeys[lid - 1];\n" <<
" result = lvals[lid - 1];\n" <<
"}\n" <<
// add key-value reduced by previous work item
"for(idx = id; idx < id + values_per_work_item; idx += 1){\n" <<
// make sure all carry-ins are saved in global memory
" barrier( CLK_GLOBAL_MEM_FENCE );\n" <<
" if(lid > 0 && idx < carry_out_size) {\n"
" key = " << carry_out_keys_first[k.var<const uint_>("idx")] << ";\n" <<
" value = " << carry_in_values_first[k.var<const uint_>("idx")] << ";\n" <<
" if(previous_key == key){\n" <<
" value = " << function(k.var<value_out_type>("result"),
k.var<value_out_type>("value")) << ";\n" <<
" }\n" <<
" " << carry_in_values_first[k.var<const uint_>("idx")] << " = value;\n" <<
" }\n" <<
"}\n";
const context &context = queue.get_context();
kernel kernel = k.compile(context);
kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size));
kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size));
queue.enqueue_1d_range_kernel(kernel,
0,
work_group_size,
work_group_size);
}
/// \internal_
///
/// Perform final reduction by key. Each work item:
/// 1. Perform local work-group reduction (Hillis/Steele scan)
/// 2. Add carry-in (if keys are right)
/// 3. Save reduced value if next key is different than processed one
template<class InputKeyIterator, class InputValueIterator,
class OutputKeyIterator, class OutputValueIterator,
class BinaryFunction>
inline void final_reduction(InputKeyIterator keys_first,
InputValueIterator values_first,
OutputKeyIterator keys_result,
OutputValueIterator values_result,
size_t count,
BinaryFunction function,
vector<uint_>::iterator new_keys_first,
vector<uint_>::iterator carry_in_keys_first,
OutputValueIterator carry_in_values_first,
size_t carry_in_size,
size_t work_group_size,
command_queue &queue)
{
typedef typename
std::iterator_traits<OutputValueIterator>::value_type value_out_type;
detail::meta_kernel k("reduce_by_key_with_scan_final_reduction");
k.add_set_arg<const uint_>("count", uint_(count));
size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys");
size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals");
k <<
k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" <<
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
k.decl<const uint_>("group_id") << " = get_group_id(0);\n" <<
k.decl<uint_>("key") << ";\n" <<
k.decl<value_out_type>("value") << ";\n"
"if(gid < count){\n" <<
k.var<uint_>("key") << " = " <<
new_keys_first[k.var<const uint_>("gid")] << ";\n" <<
k.var<value_out_type>("value") << " = " <<
values_first[k.var<const uint_>("gid")] << ";\n" <<
"lkeys[lid] = key;\n" <<
"lvals[lid] = value;\n" <<
"}\n" <<
// Hillis/Steele scan
k.decl<value_out_type>("result") << " = value;\n" <<
k.decl<uint_>("other_key") << ";\n" <<
k.decl<value_out_type>("other_value") << ";\n" <<
"for(" << k.decl<uint_>("offset") << " = 1; " <<
"offset < wg_size ; offset *= 2){\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
" if(lid >= offset) {\n" <<
" other_key = lkeys[lid - offset];\n" <<
" if(other_key == key){\n" <<
" other_value = lvals[lid - offset];\n" <<
" result = " << function(k.var<value_out_type>("result"),
k.var<value_out_type>("other_value")) << ";\n" <<
" }\n" <<
" }\n" <<
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
" lvals[lid] = result;\n" <<
"}\n" <<
"if(gid >= count) {\n return;\n};\n" <<
k.decl<const bool>("save") << " = (gid < (count - 1)) ?"
<< new_keys_first[k.var<const uint_>("gid + 1")] << " != key" <<
": true;\n" <<
// Add carry in
k.decl<uint_>("carry_in_key") << ";\n" <<
"if(group_id > 0 && save) {\n" <<
" carry_in_key = " << carry_in_keys_first[k.var<const uint_>("group_id - 1")] << ";\n" <<
" if(key == carry_in_key){\n" <<
" other_value = " << carry_in_values_first[k.var<const uint_>("group_id - 1")] << ";\n" <<
" result = " << function(k.var<value_out_type>("result"),
k.var<value_out_type>("other_value")) << ";\n" <<
" }\n" <<
"}\n" <<
// Save result only if the next key is different or it's the last element.
"if(save){\n" <<
keys_result[k.var<uint_>("key")] << " = " << keys_first[k.var<const uint_>("gid")] << ";\n" <<
values_result[k.var<uint_>("key")] << " = result;\n" <<
"}\n"
;
size_t work_groups_no = static_cast<size_t>(
std::ceil(float(count) / work_group_size)
);
const context &context = queue.get_context();
kernel kernel = k.compile(context);
kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size));
kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size));
queue.enqueue_1d_range_kernel(kernel,
0,
work_groups_no * work_group_size,
work_group_size);
}
/// \internal_
/// Returns preferred work group size for reduce by key with scan algorithm.
template<class KeyType, class ValueType>
inline size_t get_work_group_size(const device& device)
{
std::string cache_key = std::string("__boost_reduce_by_key_with_scan")
+ "k_" + type_name<KeyType>() + "_v_" + type_name<ValueType>();
// load parameters
boost::shared_ptr<parameter_cache> parameters =
detail::parameter_cache::get_global_cache(device);
return (std::max)(
static_cast<size_t>(parameters->get(cache_key, "wgsize", 256)),
static_cast<size_t>(device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>())
);
}
/// \internal_
///
/// 1. For each work group carry-out value is calculated (it's done by key-oriented
/// Hillis/Steele scan). Carry-out is a pair of the last key processed by work
/// group and sum of all values under this key in work group.
/// 2. From every carry-out carry-in is calculated by performing inclusive scan
/// by key.
/// 3. Final reduction by key is performed (key-oriented Hillis/Steele scan),
/// carry-in values are added where needed.
template<class InputKeyIterator, class InputValueIterator,
class OutputKeyIterator, class OutputValueIterator,
class BinaryFunction, class BinaryPredicate>
inline size_t reduce_by_key_with_scan(InputKeyIterator keys_first,
InputKeyIterator keys_last,
InputValueIterator values_first,
OutputKeyIterator keys_result,
OutputValueIterator values_result,
BinaryFunction function,
BinaryPredicate predicate,
command_queue &queue)
{
typedef typename
std::iterator_traits<InputValueIterator>::value_type value_type;
typedef typename
std::iterator_traits<InputKeyIterator>::value_type key_type;
typedef typename
std::iterator_traits<OutputValueIterator>::value_type value_out_type;
const context &context = queue.get_context();
size_t count = detail::iterator_range_size(keys_first, keys_last);
if(count == 0){
return size_t(0);
}
const device &device = queue.get_device();
size_t work_group_size = get_work_group_size<value_type, key_type>(device);
// Replace original key with unsigned integer keys generated based on given
// predicate. New key is also an index for keys_result and values_result vectors,
// which points to place where reduced value should be saved.
vector<uint_> new_keys(count, context);
vector<uint_>::iterator new_keys_first = new_keys.begin();
generate_uint_keys(keys_first, count, predicate, new_keys_first,
work_group_size, queue);
// Calculate carry-out and carry-in vectors size
const size_t carry_out_size = static_cast<size_t>(
std::ceil(float(count) / work_group_size)
);
vector<uint_> carry_out_keys(carry_out_size, context);
vector<value_out_type> carry_out_values(carry_out_size, context);
carry_outs(new_keys_first, values_first, count, carry_out_keys.begin(),
carry_out_values.begin(), function, work_group_size, queue);
vector<value_out_type> carry_in_values(carry_out_size, context);
carry_ins(carry_out_keys.begin(), carry_out_values.begin(),
carry_in_values.begin(), carry_out_size, function, work_group_size,
queue);
final_reduction(keys_first, values_first, keys_result, values_result,
count, function, new_keys_first, carry_out_keys.begin(),
carry_in_values.begin(), carry_out_size, work_group_size,
queue);
const size_t result = read_single_value<uint_>(new_keys.get_buffer(),
count - 1, queue);
return result + 1;
}
/// \internal_
/// Return true if requirements for running reduce by key with scan on given
/// device are met (at least one work group of preferred size can be run).
template<class InputKeyIterator, class InputValueIterator,
class OutputKeyIterator, class OutputValueIterator>
bool reduce_by_key_with_scan_requirements_met(InputKeyIterator keys_first,
InputValueIterator values_first,
OutputKeyIterator keys_result,
OutputValueIterator values_result,
const size_t count,
command_queue &queue)
{
typedef typename
std::iterator_traits<InputValueIterator>::value_type value_type;
typedef typename
std::iterator_traits<InputKeyIterator>::value_type key_type;
typedef typename
std::iterator_traits<OutputValueIterator>::value_type value_out_type;
(void) keys_first;
(void) values_first;
(void) keys_result;
(void) values_result;
const device &device = queue.get_device();
// device must have dedicated local memory storage
if(device.get_info<CL_DEVICE_LOCAL_MEM_TYPE>() != CL_LOCAL)
{
return false;
}
// local memory size in bytes (per compute unit)
const size_t local_mem_size = device.get_info<CL_DEVICE_LOCAL_MEM_SIZE>();
// preferred work group size
size_t work_group_size = get_work_group_size<key_type, value_type>(device);
// local memory size needed to perform parallel reduction
size_t required_local_mem_size = 0;
// keys size
required_local_mem_size += sizeof(uint_) * work_group_size;
// reduced values size
required_local_mem_size += sizeof(value_out_type) * work_group_size;
return (required_local_mem_size <= local_mem_size);
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP