244 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			244 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 sfrsd2.c
 | 
						|
 
 | 
						|
 A soft-decision decoder for the JT65 (63,12) Reed-Solomon code.
 | 
						|
 
 | 
						|
 This decoding scheme is built around Phil Karn's Berlekamp-Massey
 | 
						|
 errors and erasures decoder. The approach is inspired by a number of
 | 
						|
 publications, including the stochastic Chase decoder described
 | 
						|
 in "Stochastic Chase Decoding of Reed-Solomon Codes", by Leroux et al.,
 | 
						|
 IEEE Communications Letters, Vol. 14, No. 9, September 2010 and
 | 
						|
 "Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error-
 | 
						|
 and-Erasure Decoding," by Soo-Woong Lee and B. V. K. Vijaya Kumar.
 | 
						|
 
 | 
						|
 Steve Franke K9AN and Joe Taylor K1JT
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <unistd.h>
 | 
						|
#include <time.h>
 | 
						|
#include <string.h>
 | 
						|
#include "rs2.h"
 | 
						|
 | 
						|
static void *rs;
 | 
						|
 | 
						|
void sfrsd2_(int mrsym[], int mrprob[], int mr2sym[], int mr2prob[], 
 | 
						|
	     int* ntrials0, int* verbose0, int correct[], int param[],
 | 
						|
	     int indexes[], double tt[], int ntry[])
 | 
						|
{        
 | 
						|
  int rxdat[63], rxprob[63], rxdat2[63], rxprob2[63];
 | 
						|
  int workdat[63],workdat2[63];
 | 
						|
  int era_pos[51];
 | 
						|
  int c, i, j, numera, nmr2, nerr, nn=63, kk=12;
 | 
						|
  FILE *datfile, *logfile;
 | 
						|
  int ntrials = *ntrials0;
 | 
						|
  int verbose = *verbose0;
 | 
						|
  int nhard=0,nhard_min=32768,nsoft=0,nsoft_min=32768, ncandidates;
 | 
						|
  int ngmd,nera_best;
 | 
						|
  clock_t t0=0,t1=0;
 | 
						|
  int perr[8][8] = {
 | 
						|
     12,     31,     44,     52,     60,     57,     50,     50,
 | 
						|
     28,     38,     49,     58,     65,     69,     64,     80,
 | 
						|
     40,     41,     53,     62,     66,     73,     76,     81,
 | 
						|
     50,     53,     53,     64,     70,     76,     77,     81,
 | 
						|
     50,     50,     52,     60,     71,     72,     77,     84,
 | 
						|
     50,     50,     56,     62,     67,     73,     81,     85,
 | 
						|
     50,     50,     71,     62,     70,     77,     80,     85,
 | 
						|
     50,     50,     62,     64,     71,     75,     82,     87};
 | 
						|
 | 
						|
  int pmr2[8][8] = { 
 | 
						|
      4,      8,      9,      7,      6,      0,      0,      0,
 | 
						|
     13,     18,     15,     11,      9,      7,      5,      0,
 | 
						|
      0,     23,     21,     15,     12,     10,      7,      4,
 | 
						|
      0,     34,     28,     20,     16,     14,     11,      7,
 | 
						|
      0,     20,     26,     25,     19,     14,     12,      9,
 | 
						|
      0,      0,     28,     27,     22,     19,     14,     11,
 | 
						|
      0,      0,     40,     29,     29,     23,     18,     12,
 | 
						|
      0,      0,     40,     35,     31,     21,     20,     13};
 | 
						|
 | 
						|
  if(verbose) {
 | 
						|
    logfile=fopen("sfrsd.log","a");
 | 
						|
    if( !logfile ) {
 | 
						|
      printf("Unable to open sfrsd.log\n");
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
  } 
 | 
						|
    
 | 
						|
// Initialize the KA9Q Reed-Solomon encoder/decoder
 | 
						|
  unsigned int symsize=6, gfpoly=0x43, fcr=3, prim=1, nroots=51;
 | 
						|
  rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 0);
 | 
						|
 | 
						|
// Reverse the received symbol vector for BM decoder
 | 
						|
  for (i=0; i<63; i++) {
 | 
						|
    rxdat[i]=mrsym[62-i];
 | 
						|
    rxprob[i]=mrprob[62-i];
 | 
						|
    rxdat2[i]=mr2sym[62-i];
 | 
						|
    rxprob2[i]=mr2prob[62-i];
 | 
						|
  }
 | 
						|
    
 | 
						|
// Sort the mrsym probabilities to find the least reliable symbols
 | 
						|
  int k, pass, tmp, nsym=63;
 | 
						|
  int probs[63];
 | 
						|
  for (i=0; i<63; i++) {
 | 
						|
    indexes[i]=i;
 | 
						|
    probs[i]=rxprob[i];
 | 
						|
  }
 | 
						|
  for (pass = 1; pass <= nsym-1; pass++) {
 | 
						|
    for (k = 0; k < nsym - pass; k++) {
 | 
						|
      if( probs[k] < probs[k+1] ) {
 | 
						|
	tmp = probs[k];
 | 
						|
	probs[k] = probs[k+1];
 | 
						|
	probs[k+1] = tmp;
 | 
						|
	tmp = indexes[k];
 | 
						|
	indexes[k] = indexes[k+1];
 | 
						|
	indexes[k+1] = tmp;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
// See if we can decode using BM HDD, and calculate the syndrome vector.
 | 
						|
  memset(era_pos,0,51*sizeof(int));
 | 
						|
  numera=0;
 | 
						|
  memcpy(workdat,rxdat,sizeof(rxdat));
 | 
						|
  nerr=decode_rs_int(rs,workdat,era_pos,numera,1);
 | 
						|
  if( nerr >= 0 ) {
 | 
						|
    if(verbose) fprintf(logfile,"   BM decode nerrors= %3d : ",nerr);
 | 
						|
    memcpy(correct,workdat,63*sizeof(int));
 | 
						|
    ngmd=-1;
 | 
						|
    param[0]=0;
 | 
						|
    param[1]=0;
 | 
						|
    param[2]=0;
 | 
						|
    param[3]=0;
 | 
						|
    param[4]=0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
/*
 | 
						|
Generate random erasure-locator vectors and see if any of them
 | 
						|
decode. This will generate a list of potential codewords. The
 | 
						|
"soft" distance between each codeword and the received word is
 | 
						|
used to decide which codeword is "best".
 | 
						|
*/
 | 
						|
 | 
						|
#ifdef WIN32
 | 
						|
  srand(0xdeadbeef);
 | 
						|
#else
 | 
						|
  srandom(0xdeadbeef);
 | 
						|
#endif
 | 
						|
 | 
						|
  float ratio, ratio0[63];
 | 
						|
  int threshe, thresh2, nsum;
 | 
						|
  int thresh0[63],thresh1[63], mr2flag;
 | 
						|
  ncandidates=0;
 | 
						|
  nsum=0;
 | 
						|
  int ii,jj;
 | 
						|
  for (i=0; i<nn; i++) {
 | 
						|
    nsum=nsum+rxprob[i];
 | 
						|
    j = indexes[62-i];
 | 
						|
    ratio = (float)rxprob2[j]/(float)rxprob[j];
 | 
						|
    ratio0[i]=ratio;
 | 
						|
    ii = 7.999*ratio;
 | 
						|
    jj = (62-i)/8;
 | 
						|
    thresh0[i] = 1.3*perr[ii][jj];
 | 
						|
    thresh1[i] = 0.4*pmr2[ii][jj];
 | 
						|
  }
 | 
						|
  if(nsum==0) return;
 | 
						|
    
 | 
						|
  for( k=0; k<ntrials; k++) {
 | 
						|
    memset(era_pos,0,51*sizeof(int));
 | 
						|
    memcpy(workdat,rxdat,sizeof(rxdat));
 | 
						|
 | 
						|
/* 
 | 
						|
Mark a subset of the symbols as erasures.
 | 
						|
Run through the ranked symbols, starting with the worst, i=0.
 | 
						|
NB: j is the symbol-vector index of the symbol with rank i.
 | 
						|
*/
 | 
						|
    numera=0;
 | 
						|
    nmr2=0;
 | 
						|
    for (i=0; i<nn; i++) {
 | 
						|
      j = indexes[62-i];
 | 
						|
      threshe=thresh0[i];
 | 
						|
      thresh2=thresh1[i];
 | 
						|
      long int ir, ir2;
 | 
						|
#ifdef WIN32
 | 
						|
      ir=rand();
 | 
						|
      ir2=rand();
 | 
						|
#else
 | 
						|
      ir=random();
 | 
						|
      ir2=random();
 | 
						|
#endif
 | 
						|
      if( ((ir % 100) < threshe ) && (numera+2*nmr2) < 51 ) {
 | 
						|
          era_pos[numera]=j;
 | 
						|
	  numera=numera+1;
 | 
						|
      }
 | 
						|
      if( ((ir2 % 100) < thresh2) && (numera+2*nmr2)<51) {
 | 
						|
          workdat[j]=rxdat2[j];
 | 
						|
          nmr2=nmr2+1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    t0=clock();
 | 
						|
//    rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 1);
 | 
						|
    nerr=decode_rs_int(rs,workdat,era_pos,numera,1);
 | 
						|
    t1=clock();
 | 
						|
    tt[0]+=(double)(t1-t0)/CLOCKS_PER_SEC;
 | 
						|
        
 | 
						|
    if( nerr >= 0 ) {
 | 
						|
      ncandidates=ncandidates+1;
 | 
						|
      nhard=0;
 | 
						|
      nsoft=0;
 | 
						|
      for (i=0; i<63; i++) {
 | 
						|
	if(workdat[i] != rxdat[i]) {
 | 
						|
	  nhard=nhard+1;
 | 
						|
	  if(workdat[i] != rxdat2[i]) {
 | 
						|
	    nsoft=nsoft+rxprob[i];
 | 
						|
	  }
 | 
						|
	}
 | 
						|
      }
 | 
						|
      nsoft=63*nsoft/nsum;
 | 
						|
      if((nsoft < 33) && (nhard < 43) && (nhard+nsoft) < 74) {  //???
 | 
						|
	if( (nsoft < nsoft_min) ) {
 | 
						|
	  nsoft_min=nsoft;
 | 
						|
	  nhard_min=nhard;
 | 
						|
	  memcpy(correct,workdat,63*sizeof(int));
 | 
						|
	  ngmd=0;
 | 
						|
	  nera_best=numera;
 | 
						|
	  ntry[0]=k;
 | 
						|
	}
 | 
						|
      }
 | 
						|
      if(nsoft_min < 27) break;
 | 
						|
      if((nsoft_min < 32) && (nhard_min < 43) && 
 | 
						|
	 (nhard_min+nsoft_min) < 74) break;
 | 
						|
    }
 | 
						|
    if(k == ntrials-1) ntry[0]=k+1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if(verbose) fprintf(logfile,
 | 
						|
     "%d trials and %d candidates after stochastic loop\n",k,ncandidates);
 | 
						|
 | 
						|
  if( (ncandidates >= 0) && (nsoft_min < 36) && (nhard_min < 44) ) {
 | 
						|
    if(verbose) {
 | 
						|
      for (i=0; i<63; i++) {
 | 
						|
	fprintf(logfile,"%3d %3d %3d %3d %3d %3d\n",i,correct[i],
 | 
						|
		rxdat[i],rxprob[i],rxdat2[i],rxprob2[i]);
 | 
						|
      }
 | 
						|
      fprintf(logfile,"**** ncandidates %d nhard %d nsoft %d nsum %d\n",
 | 
						|
	      ncandidates,nhard_min,nsoft_min,nsum);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    nhard_min=-1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if(verbose) {
 | 
						|
    fprintf(logfile,"exiting sfrsd\n");
 | 
						|
    fclose(logfile);
 | 
						|
  }
 | 
						|
  param[0]=ncandidates;
 | 
						|
  param[1]=nhard_min;
 | 
						|
  param[2]=nsoft_min;
 | 
						|
  param[3]=nera_best;
 | 
						|
  param[4]=ngmd;
 | 
						|
  if(param[0]==0) param[2]=-1;
 | 
						|
  return;
 | 
						|
}
 |