js8call/.svn/pristine/7b/7b33e86e7ffecd757ae2d686efdfc5c3c37fddaa.svn-base
2018-02-08 21:28:33 -05:00

694 lines
24 KiB
Plaintext

// Copyright (C) 2004-2008 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Nick Edmonds
// Andrew Lumsdaine
// The placement of this #include probably looks very odd relative to
// the #ifndef/#define pair below. However, this placement is
// extremely important to allow the various property map headers to be
// included in any order.
#include <boost/property_map/property_map.hpp>
#ifndef BOOST_PARALLEL_DISTRIBUTED_PROPERTY_MAP_HPP
#define BOOST_PARALLEL_DISTRIBUTED_PROPERTY_MAP_HPP
#include <boost/assert.hpp>
#include <boost/type_traits/is_base_and_derived.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <boost/optional.hpp>
#include <boost/property_map/parallel/process_group.hpp>
#include <boost/function/function1.hpp>
#include <vector>
#include <set>
#include <boost/property_map/parallel/basic_reduce.hpp>
#include <boost/property_map/parallel/detail/untracked_pair.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/property_map/parallel/local_property_map.hpp>
#include <map>
#include <boost/version.hpp>
#include <boost/property_map/parallel/unsafe_serialize.hpp>
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/sequenced_index.hpp>
// Serialization functions for constructs we use
#include <boost/serialization/utility.hpp>
namespace boost { namespace parallel {
namespace detail {
/**************************************************************************
* Metafunction that degrades an Lvalue Property Map category tag to
* a Read Write Property Map category tag.
**************************************************************************/
template<bool IsLvaluePropertyMap>
struct make_nonlvalue_property_map
{
template<typename T> struct apply { typedef T type; };
};
template<>
struct make_nonlvalue_property_map<true>
{
template<typename>
struct apply
{
typedef read_write_property_map_tag type;
};
};
/**************************************************************************
* Performs a "put" on a property map so long as the property map is
* a Writable Property Map or a mutable Lvalue Property Map. This
* is required because the distributed property map's message
* handler handles "put" messages even for a const property map,
* although receipt of a "put" message is ill-formed.
**************************************************************************/
template<bool IsLvaluePropertyMap>
struct maybe_put_in_lvalue_pm
{
template<typename PropertyMap, typename Key, typename Value>
static inline void
do_put(PropertyMap, const Key&, const Value&)
{ BOOST_ASSERT(false); }
};
template<>
struct maybe_put_in_lvalue_pm<true>
{
template<typename PropertyMap, typename Key, typename Value>
static inline void
do_put(PropertyMap pm, const Key& key, const Value& value)
{
using boost::put;
put(pm, key, value);
}
};
template<typename PropertyMap, typename Key, typename Value>
inline void
maybe_put_impl(PropertyMap pm, const Key& key, const Value& value,
writable_property_map_tag)
{
using boost::put;
put(pm, key, value);
}
template<typename PropertyMap, typename Key, typename Value>
inline void
maybe_put_impl(PropertyMap pm, const Key& key, const Value& value,
lvalue_property_map_tag)
{
typedef typename property_traits<PropertyMap>::value_type value_type;
typedef typename property_traits<PropertyMap>::reference reference;
// DPG TBD: Some property maps are improperly characterized as
// lvalue_property_maps, when in fact they do not provide true
// references. The most typical example is those property maps
// built from vector<bool> and its iterators, which deal with
// proxies. We don't want to mischaracterize these as not having a
// "put" operation, so we only consider an lvalue_property_map as
// constant if its reference is const value_type&. In fact, this
// isn't even quite correct (think of a
// vector<bool>::const_iterator), but at present C++ doesn't
// provide us with any alternatives.
typedef is_same<const value_type&, reference> is_constant;
maybe_put_in_lvalue_pm<(!is_constant::value)>::do_put(pm, key, value);
}
template<typename PropertyMap, typename Key, typename Value>
inline void
maybe_put_impl(PropertyMap, const Key&, const Value&, ...)
{ BOOST_ASSERT(false); }
template<typename PropertyMap, typename Key, typename Value>
inline void
maybe_put(PropertyMap pm, const Key& key, const Value& value)
{
maybe_put_impl(pm, key, value,
typename property_traits<PropertyMap>::category());
}
} // end namespace detail
/** The consistency model used by the distributed property map. */
enum consistency_model {
cm_forward = 1 << 0,
cm_backward = 1 << 1,
cm_bidirectional = cm_forward | cm_backward,
cm_flush = 1 << 2,
cm_reset = 1 << 3,
cm_clear = 1 << 4
};
/** Distributed property map adaptor.
*
* The distributed property map adaptor is a property map whose
* stored values are distributed across multiple non-overlapping
* memory spaces on different processes. Values local to the current
* process are stored within a local property map and may be
* immediately accessed via @c get and @c put. Values stored on
* remote processes may also be access via @c get and @c put, but the
* behavior differs slightly:
*
* - @c put operations update a local ghost cell and send a "put"
* message to the process that owns the value. The owner is free to
* update its own "official" value or may ignore the put request.
*
* - @c get operations returns the contents of the local ghost
* cell. If no ghost cell is available, one is created using the
* default value provided by the "reduce" operation. See, e.g.,
* @ref basic_reduce and @ref property_reduce.
*
* Using distributed property maps requires a bit more care than using
* local, sequential property maps. While the syntax and semantics are
* similar, distributed property maps may contain out-of-date
* information that can only be guaranteed to be synchronized by
* calling the @ref synchronize function in all processes.
*
* To address the issue of out-of-date values, distributed property
* maps are supplied with a reduction operation. The reduction
* operation has two roles:
*
* -# When a value is needed for a remote key but no value is
* immediately available, the reduction operation provides a
* suitable default. For instance, a distributed property map
* storing distances may have a reduction operation that returns
* an infinite value as the default, whereas a distributed
* property map for vertex colors may return white as the
* default.
*
* -# When a value is received from a remote process, the process
* owning the key associated with that value must determine which
* value---the locally stored value, the value received from a
* remote process, or some combination of the two---will be
* stored as the "official" value in the property map. The
* reduction operation transforms the local and remote values
* into the "official" value to be stored.
*
* @tparam ProcessGroup the type of the process group over which the
* property map is distributed and is also the medium for
* communication.
*
* @tparam StorageMap the type of the property map that will
* store values for keys local to this processor. The @c value_type of
* this property map will become the @c value_type of the distributed
* property map. The distributed property map models the same property
* map concepts as the @c LocalPropertyMap, with one exception: a
* distributed property map cannot be an LvaluePropertyMap (because
* remote values are not addressable), and is therefore limited to
* ReadWritePropertyMap.
*/
template<typename ProcessGroup, typename GlobalMap, typename StorageMap>
class distributed_property_map
{
public:
/// The key type of the property map.
typedef typename property_traits<GlobalMap>::key_type key_type;
/// The value type of the property map.
typedef typename property_traits<StorageMap>::value_type value_type;
typedef typename property_traits<StorageMap>::reference reference;
typedef ProcessGroup process_group_type;
private:
typedef distributed_property_map self_type;
typedef typename property_traits<StorageMap>::category local_category;
typedef typename property_traits<StorageMap>::key_type local_key_type;
typedef typename property_traits<GlobalMap>::value_type owner_local_pair;
typedef typename ProcessGroup::process_id_type process_id_type;
enum property_map_messages {
/** A request to store a value in a property map. The message
* contains a std::pair<key, data>.
*/
property_map_put,
/** A request to retrieve a particular value in a property
* map. The message contains a key. The owner of that key will
* reply with a value.
*/
property_map_get,
/** A request to update values stored on a remote processor. The
* message contains a vector of keys for which the source
* requests updated values. This message will only be transmitted
* during synchronization.
*/
property_map_multiget,
/** A request to store values in a ghost cell. This message
* contains a vector of key/value pairs corresponding to the
* sequence of keys sent to the source processor.
*/
property_map_multiget_reply,
/** The payload containing a vector of local key-value pairs to be
* put into the remote property map. A key-value std::pair will be
* used to store each local key-value pair.
*/
property_map_multiput
};
// Code from Joaquín M López Muñoz to work around unusual implementation of
// std::pair in VC++ 10:
template<typename First,typename Second>
class pair_first_extractor {
typedef std::pair<First,Second> value_type;
public:
typedef First result_type;
const result_type& operator()(const value_type& x) const {
return x.first;
}
result_type& operator()(value_type& x) const {
return x.first;
}
};
public:
/// The type of the ghost cells
typedef multi_index::multi_index_container<
std::pair<key_type, value_type>,
multi_index::indexed_by<
multi_index::sequenced<>,
multi_index::hashed_unique<
pair_first_extractor<key_type, value_type>
>
>
> ghost_cells_type;
/// Iterator into the ghost cells
typedef typename ghost_cells_type::iterator iterator;
/// Key-based index into the ghost cells
typedef typename ghost_cells_type::template nth_index<1>::type
ghost_cells_key_index_type;
/// Iterator into the ghost cells (by key)
typedef typename ghost_cells_key_index_type::iterator key_iterator;
/** The property map category. A distributed property map cannot be
* an Lvalue Property Map, because values on remote processes cannot
* be addresses.
*/
typedef typename detail::make_nonlvalue_property_map<
(is_base_and_derived<lvalue_property_map_tag, local_category>::value
|| is_same<lvalue_property_map_tag, local_category>::value)>
::template apply<local_category>::type category;
/** Default-construct a distributed property map. This function
* creates an initialized property map that must be assigned to a
* valid value before being used. It is only provided here because
* property maps must be Default Constructible.
*/
distributed_property_map() {}
/** Construct a distributed property map. Builds a distributed
* property map communicating over the given process group and using
* the given local property map for storage. Since no reduction
* operation is provided, the default reduction operation @c
* basic_reduce<value_type> is used.
*/
distributed_property_map(const ProcessGroup& pg, const GlobalMap& global,
const StorageMap& pm)
: data(new data_t(pg, global, pm, basic_reduce<value_type>(), false))
{
typedef handle_message<basic_reduce<value_type> > Handler;
data->ghost_cells.reset(new ghost_cells_type());
Handler handler(data);
data->process_group.replace_handler(handler, true);
data->process_group.template get_receiver<Handler>()
->setup_triggers(data->process_group);
}
/** Construct a distributed property map. Builds a distributed
* property map communicating over the given process group and using
* the given local property map for storage. The given @p reduce
* parameter is used as the reduction operation.
*/
template<typename Reduce>
distributed_property_map(const ProcessGroup& pg, const GlobalMap& global,
const StorageMap& pm,
const Reduce& reduce);
~distributed_property_map();
/// Set the reduce operation of the distributed property map.
template<typename Reduce>
void set_reduce(const Reduce& reduce);
// Set the consistency model for the distributed property map
void set_consistency_model(int model);
// Get the consistency model
int get_consistency_model() const { return data->model; }
// Set the maximum number of ghost cells that we are allowed to
// maintain. If 0, all ghost cells will be retained.
void set_max_ghost_cells(std::size_t max_ghost_cells);
// Clear out all ghost cells
void clear();
// Reset the values in all ghost cells to the default value
void reset();
// Flush all values destined for remote processors
void flush();
reference operator[](const key_type& key) const
{
owner_local_pair p = get(data->global, key);
if (p.first == process_id(data->process_group)) {
return data->storage[p.second];
} else {
return cell(key);
}
}
process_group_type process_group() const
{
return data->process_group.base();
}
StorageMap& base() { return data->storage; }
const StorageMap& base() const { return data->storage; }
/** Sends a "put" request.
* \internal
*
*/
void
request_put(process_id_type p, const key_type& k, const value_type& v) const
{
send(data->process_group, p, property_map_put,
boost::parallel::detail::make_untracked_pair(k, v));
}
/** Access the ghost cell for the given key.
* \internal
*/
value_type& cell(const key_type& k, bool request_if_missing = true) const;
/** Perform synchronization
* \internal
*/
void do_synchronize();
const GlobalMap& global() const { return data->global; }
GlobalMap& global() { return data->global; }
struct data_t
{
data_t(const ProcessGroup& pg, const GlobalMap& global,
const StorageMap& pm, const function1<value_type, key_type>& dv,
bool has_default_resolver)
: process_group(pg), global(global), storage(pm),
ghost_cells(), max_ghost_cells(1000000), get_default_value(dv),
has_default_resolver(has_default_resolver), model(cm_forward) { }
/// The process group
ProcessGroup process_group;
/// A mapping from the keys of this property map to the global
/// descriptor.
GlobalMap global;
/// Local property map
StorageMap storage;
/// The ghost cells
shared_ptr<ghost_cells_type> ghost_cells;
/// The maximum number of ghost cells we are permitted to hold. If
/// zero, we are permitted to have an infinite number of ghost
/// cells.
std::size_t max_ghost_cells;
/// Default value for remote ghost cells, as defined by the
/// reduction operation.
function1<value_type, key_type> get_default_value;
/// True if this resolver is the "default" resolver, meaning that
/// we should not be able to get() a default value; it needs to be
/// request()ed first.
bool has_default_resolver;
// Current consistency model
int model;
// Function that resets all of the ghost cells to their default
// values. It knows the type of the resolver, so we can eliminate
// a large number of calls through function pointers.
void (data_t::*reset)();
// Clear out all ghost cells
void clear();
// Flush all values destined for remote processors
void flush();
// Send out requests to "refresh" the values of ghost cells that
// we're holding.
void refresh_ghost_cells();
private:
template<typename Resolver> void do_reset();
friend class distributed_property_map;
};
friend struct data_t;
shared_ptr<data_t> data;
private:
// Prunes the least recently used ghost cells until we have @c
// max_ghost_cells or fewer ghost cells.
void prune_ghost_cells() const;
/** Handles incoming messages.
*
* This function object is responsible for handling all incoming
* messages for the distributed property map.
*/
template<typename Reduce>
struct handle_message
{
explicit handle_message(const shared_ptr<data_t>& data,
const Reduce& reduce = Reduce())
: data_ptr(data), reduce(reduce) { }
void operator()(process_id_type source, int tag);
/// Individual message handlers
void
handle_put(int source, int tag,
const boost::parallel::detail::untracked_pair<key_type, value_type>& data,
trigger_receive_context);
value_type
handle_get(int source, int tag, const key_type& data,
trigger_receive_context);
void
handle_multiget(int source, int tag,
const std::vector<key_type>& data,
trigger_receive_context);
void
handle_multiget_reply
(int source, int tag,
const std::vector<boost::parallel::detail::untracked_pair<key_type, value_type> >& msg,
trigger_receive_context);
void
handle_multiput
(int source, int tag,
const std::vector<unsafe_pair<local_key_type, value_type> >& data,
trigger_receive_context);
void setup_triggers(process_group_type& pg);
private:
weak_ptr<data_t> data_ptr;
Reduce reduce;
};
/* Sets up the next stage in a multi-stage synchronization, for
bidirectional consistency. */
struct on_synchronize
{
explicit on_synchronize(const shared_ptr<data_t>& data) : data_ptr(data) { }
void operator()();
private:
weak_ptr<data_t> data_ptr;
};
};
/* An implementation helper macro for the common case of naming
distributed property maps with all of the normal template
parameters. */
#define PBGL_DISTRIB_PMAP \
distributed_property_map<ProcessGroup, GlobalMap, StorageMap>
/* Request that the value for the given remote key be retrieved in
the next synchronization round. */
template<typename ProcessGroup, typename GlobalMap, typename StorageMap>
inline void
request(const PBGL_DISTRIB_PMAP& pm,
typename PBGL_DISTRIB_PMAP::key_type const& key)
{
if (get(pm.data->global, key).first != process_id(pm.data->process_group))
pm.cell(key, false);
}
/** Get the value associated with a particular key. Retrieves the
* value associated with the given key. If the key denotes a
* locally-owned object, it returns the value from the local property
* map; if the key denotes a remotely-owned object, retrieves the
* value of the ghost cell for that key, which may be the default
* value provided by the reduce operation.
*
* Complexity: For a local key, O(1) get operations on the underlying
* property map. For a non-local key, O(1) accesses to the ghost cells.
*/
template<typename ProcessGroup, typename GlobalMap, typename StorageMap>
inline
typename PBGL_DISTRIB_PMAP::value_type
get(const PBGL_DISTRIB_PMAP& pm,
typename PBGL_DISTRIB_PMAP::key_type const& key)
{
using boost::get;
typename property_traits<GlobalMap>::value_type p =
get(pm.data->global, key);
if (p.first == process_id(pm.data->process_group)) {
return get(pm.data->storage, p.second);
} else {
return pm.cell(key);
}
}
/** Put a value associated with the given key into the property map.
* When the key denotes a locally-owned object, this operation updates
* the underlying local property map. Otherwise, the local ghost cell
* is updated and a "put" message is sent to the processor owning this
* key.
*
* Complexity: For a local key, O(1) put operations on the underlying
* property map. For a nonlocal key, O(1) accesses to the ghost cells
* and will send O(1) messages of size O(sizeof(key) + sizeof(value)).
*/
template<typename ProcessGroup, typename GlobalMap, typename StorageMap>
void
put(const PBGL_DISTRIB_PMAP& pm,
typename PBGL_DISTRIB_PMAP::key_type const & key,
typename PBGL_DISTRIB_PMAP::value_type const & value)
{
using boost::put;
typename property_traits<GlobalMap>::value_type p =
get(pm.data->global, key);
if (p.first == process_id(pm.data->process_group)) {
put(pm.data->storage, p.second, value);
} else {
if (pm.data->model & cm_forward)
pm.request_put(p.first, key, value);
pm.cell(key, false) = value;
}
}
/** Put a value associated with a given key into the local view of the
* property map. This operation is equivalent to @c put, but with one
* exception: no message will be sent to the owning processor in the
* case of a remote update. The effect is that any value written via
* @c local_put for a remote key may be overwritten in the next
* synchronization round.
*/
template<typename ProcessGroup, typename GlobalMap, typename StorageMap>
void
local_put(const PBGL_DISTRIB_PMAP& pm,
typename PBGL_DISTRIB_PMAP::key_type const & key,
typename PBGL_DISTRIB_PMAP::value_type const & value)
{
using boost::put;
typename property_traits<GlobalMap>::value_type p =
get(pm.data->global, key);
if (p.first == process_id(pm.data->process_group))
put(pm.data->storage, p.second, value);
else pm.cell(key, false) = value;
}
/** Cache the value associated with the given remote key. If the key
* is local, ignore the operation. */
template<typename ProcessGroup, typename GlobalMap, typename StorageMap>
inline void
cache(const PBGL_DISTRIB_PMAP& pm,
typename PBGL_DISTRIB_PMAP::key_type const & key,
typename PBGL_DISTRIB_PMAP::value_type const & value)
{
typename ProcessGroup::process_id_type id = get(pm.data->global, key).first;
if (id != process_id(pm.data->process_group)) pm.cell(key, false) = value;
}
/// Synchronize the property map.
template<typename ProcessGroup, typename GlobalMap, typename StorageMap>
void
synchronize(PBGL_DISTRIB_PMAP& pm)
{
pm.do_synchronize();
}
/// Create a distributed property map.
template<typename ProcessGroup, typename GlobalMap, typename StorageMap>
inline distributed_property_map<ProcessGroup, GlobalMap, StorageMap>
make_distributed_property_map(const ProcessGroup& pg, GlobalMap global,
StorageMap storage)
{
typedef distributed_property_map<ProcessGroup, GlobalMap, StorageMap>
result_type;
return result_type(pg, global, storage);
}
/**
* \overload
*/
template<typename ProcessGroup, typename GlobalMap, typename StorageMap,
typename Reduce>
inline distributed_property_map<ProcessGroup, GlobalMap, StorageMap>
make_distributed_property_map(const ProcessGroup& pg, GlobalMap global,
StorageMap storage, Reduce reduce)
{
typedef distributed_property_map<ProcessGroup, GlobalMap, StorageMap>
result_type;
return result_type(pg, global, storage, reduce);
}
} } // end namespace boost::parallel
#include <boost/property_map/parallel/impl/distributed_property_map.ipp>
#undef PBGL_DISTRIB_PMAP
#endif // BOOST_PARALLEL_DISTRIBUTED_PROPERTY_MAP_HPP