285 lines
8.8 KiB
Plaintext
285 lines
8.8 KiB
Plaintext
/* boost random/uniform_on_sphere.hpp header file
|
|
*
|
|
* Copyright Jens Maurer 2000-2001
|
|
* Copyright Steven Watanabe 2011
|
|
* Distributed under the Boost Software License, Version 1.0. (See
|
|
* accompanying file LICENSE_1_0.txt or copy at
|
|
* http://www.boost.org/LICENSE_1_0.txt)
|
|
*
|
|
* See http://www.boost.org for most recent version including documentation.
|
|
*
|
|
* $Id$
|
|
*
|
|
* Revision history
|
|
* 2001-02-18 moved to individual header files
|
|
*/
|
|
|
|
#ifndef BOOST_RANDOM_UNIFORM_ON_SPHERE_HPP
|
|
#define BOOST_RANDOM_UNIFORM_ON_SPHERE_HPP
|
|
|
|
#include <vector>
|
|
#include <algorithm> // std::transform
|
|
#include <functional> // std::bind2nd, std::divides
|
|
#include <boost/assert.hpp>
|
|
#include <boost/random/detail/config.hpp>
|
|
#include <boost/random/detail/operators.hpp>
|
|
#include <boost/random/normal_distribution.hpp>
|
|
|
|
namespace boost {
|
|
namespace random {
|
|
|
|
/**
|
|
* Instantiations of class template uniform_on_sphere model a
|
|
* \random_distribution. Such a distribution produces random
|
|
* numbers uniformly distributed on the unit sphere of arbitrary
|
|
* dimension @c dim. The @c Cont template parameter must be a STL-like
|
|
* container type with begin and end operations returning non-const
|
|
* ForwardIterators of type @c Cont::iterator.
|
|
*/
|
|
template<class RealType = double, class Cont = std::vector<RealType> >
|
|
class uniform_on_sphere
|
|
{
|
|
public:
|
|
typedef RealType input_type;
|
|
typedef Cont result_type;
|
|
|
|
class param_type
|
|
{
|
|
public:
|
|
|
|
typedef uniform_on_sphere distribution_type;
|
|
|
|
/**
|
|
* Constructs the parameters of a uniform_on_sphere
|
|
* distribution, given the dimension of the sphere.
|
|
*/
|
|
explicit param_type(int dim_arg = 2) : _dim(dim_arg)
|
|
{
|
|
BOOST_ASSERT(_dim >= 0);
|
|
}
|
|
|
|
/** Returns the dimension of the sphere. */
|
|
int dim() const { return _dim; }
|
|
|
|
/** Writes the parameters to a @c std::ostream. */
|
|
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
|
|
{
|
|
os << parm._dim;
|
|
return os;
|
|
}
|
|
|
|
/** Reads the parameters from a @c std::istream. */
|
|
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
|
|
{
|
|
is >> parm._dim;
|
|
return is;
|
|
}
|
|
|
|
/** Returns true if the two sets of parameters are equal. */
|
|
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
|
|
{ return lhs._dim == rhs._dim; }
|
|
|
|
/** Returns true if the two sets of parameters are different. */
|
|
BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)
|
|
|
|
private:
|
|
int _dim;
|
|
};
|
|
|
|
/**
|
|
* Constructs a @c uniform_on_sphere distribution.
|
|
* @c dim is the dimension of the sphere.
|
|
*
|
|
* Requires: dim >= 0
|
|
*/
|
|
explicit uniform_on_sphere(int dim_arg = 2)
|
|
: _container(dim_arg), _dim(dim_arg) { }
|
|
|
|
/**
|
|
* Constructs a @c uniform_on_sphere distribution from its parameters.
|
|
*/
|
|
explicit uniform_on_sphere(const param_type& parm)
|
|
: _container(parm.dim()), _dim(parm.dim()) { }
|
|
|
|
// compiler-generated copy ctor and assignment operator are fine
|
|
|
|
/** Returns the dimension of the sphere. */
|
|
int dim() const { return _dim; }
|
|
|
|
/** Returns the parameters of the distribution. */
|
|
param_type param() const { return param_type(_dim); }
|
|
/** Sets the parameters of the distribution. */
|
|
void param(const param_type& parm)
|
|
{
|
|
_dim = parm.dim();
|
|
_container.resize(_dim);
|
|
}
|
|
|
|
/**
|
|
* Returns the smallest value that the distribution can produce.
|
|
* Note that this is required to approximate the standard library's
|
|
* requirements. The behavior is defined according to lexicographical
|
|
* comparison so that for a container type of std::vector,
|
|
* dist.min() <= x <= dist.max() where x is any value produced
|
|
* by the distribution.
|
|
*/
|
|
result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const
|
|
{
|
|
result_type result(_dim);
|
|
if(_dim != 0) {
|
|
result.front() = RealType(-1.0);
|
|
}
|
|
return result;
|
|
}
|
|
/**
|
|
* Returns the largest value that the distribution can produce.
|
|
* Note that this is required to approximate the standard library's
|
|
* requirements. The behavior is defined according to lexicographical
|
|
* comparison so that for a container type of std::vector,
|
|
* dist.min() <= x <= dist.max() where x is any value produced
|
|
* by the distribution.
|
|
*/
|
|
result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const
|
|
{
|
|
result_type result(_dim);
|
|
if(_dim != 0) {
|
|
result.front() = RealType(1.0);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Effects: Subsequent uses of the distribution do not depend
|
|
* on values produced by any engine prior to invoking reset.
|
|
*/
|
|
void reset() {}
|
|
|
|
/**
|
|
* Returns a point uniformly distributed over the surface of
|
|
* a sphere of dimension dim().
|
|
*/
|
|
template<class Engine>
|
|
const result_type & operator()(Engine& eng)
|
|
{
|
|
using std::sqrt;
|
|
switch(_dim)
|
|
{
|
|
case 0: break;
|
|
case 1:
|
|
{
|
|
if(uniform_01<RealType>()(eng) < 0.5) {
|
|
*_container.begin() = -1;
|
|
} else {
|
|
*_container.begin() = 1;
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
uniform_01<RealType> uniform;
|
|
RealType sqsum;
|
|
RealType x, y;
|
|
do {
|
|
x = uniform(eng) * 2 - 1;
|
|
y = uniform(eng) * 2 - 1;
|
|
sqsum = x*x + y*y;
|
|
} while(sqsum == 0 || sqsum > 1);
|
|
RealType mult = 1/sqrt(sqsum);
|
|
typename Cont::iterator iter = _container.begin();
|
|
*iter = x * mult;
|
|
iter++;
|
|
*iter = y * mult;
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
uniform_01<RealType> uniform;
|
|
RealType sqsum;
|
|
RealType x, y;
|
|
do {
|
|
x = uniform(eng) * 2 - 1;
|
|
y = uniform(eng) * 2 - 1;
|
|
sqsum = x*x + y*y;
|
|
} while(sqsum > 1);
|
|
RealType mult = 2 * sqrt(1 - sqsum);
|
|
typename Cont::iterator iter = _container.begin();
|
|
*iter = x * mult;
|
|
++iter;
|
|
*iter = y * mult;
|
|
++iter;
|
|
*iter = 2 * sqsum - 1;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
detail::unit_normal_distribution<RealType> normal;
|
|
RealType sqsum;
|
|
do {
|
|
sqsum = 0;
|
|
for(typename Cont::iterator it = _container.begin();
|
|
it != _container.end();
|
|
++it) {
|
|
RealType val = normal(eng);
|
|
*it = val;
|
|
sqsum += val * val;
|
|
}
|
|
} while(sqsum == 0);
|
|
// for all i: result[i] /= sqrt(sqsum)
|
|
std::transform(_container.begin(), _container.end(), _container.begin(),
|
|
std::bind2nd(std::multiplies<RealType>(), 1/sqrt(sqsum)));
|
|
}
|
|
}
|
|
return _container;
|
|
}
|
|
|
|
/**
|
|
* Returns a point uniformly distributed over the surface of
|
|
* a sphere of dimension param.dim().
|
|
*/
|
|
template<class Engine>
|
|
result_type operator()(Engine& eng, const param_type& parm) const
|
|
{
|
|
return uniform_on_sphere(parm)(eng);
|
|
}
|
|
|
|
/** Writes the distribution to a @c std::ostream. */
|
|
BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, uniform_on_sphere, sd)
|
|
{
|
|
os << sd._dim;
|
|
return os;
|
|
}
|
|
|
|
/** Reads the distribution from a @c std::istream. */
|
|
BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, uniform_on_sphere, sd)
|
|
{
|
|
is >> sd._dim;
|
|
sd._container.resize(sd._dim);
|
|
return is;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the two distributions will produce identical
|
|
* sequences of values, given equal generators.
|
|
*/
|
|
BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(uniform_on_sphere, lhs, rhs)
|
|
{ return lhs._dim == rhs._dim; }
|
|
|
|
/**
|
|
* Returns true if the two distributions may produce different
|
|
* sequences of values, given equal generators.
|
|
*/
|
|
BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(uniform_on_sphere)
|
|
|
|
private:
|
|
result_type _container;
|
|
int _dim;
|
|
};
|
|
|
|
} // namespace random
|
|
|
|
using random::uniform_on_sphere;
|
|
|
|
} // namespace boost
|
|
|
|
#endif // BOOST_RANDOM_UNIFORM_ON_SPHERE_HPP
|