635 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			635 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com)
 | |
| //
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| // This module implements the Hyper-Exponential distribution.
 | |
| //
 | |
| // References:
 | |
| // - "Queueing Theory in Manufacturing Systems Analysis and Design" by H.T. Papadopolous, C. Heavey and J. Browne (Chapman & Hall/CRC, 1993)
 | |
| // - http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html
 | |
| // - http://en.wikipedia.org/wiki/Hyperexponential_distribution
 | |
| //
 | |
| 
 | |
| #ifndef BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
 | |
| #define BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
 | |
| 
 | |
| 
 | |
| #include <boost/config.hpp>
 | |
| #include <boost/math/distributions/complement.hpp>
 | |
| #include <boost/math/distributions/detail/common_error_handling.hpp>
 | |
| #include <boost/math/distributions/exponential.hpp>
 | |
| #include <boost/math/policies/policy.hpp>
 | |
| #include <boost/math/special_functions/fpclassify.hpp>
 | |
| #include <boost/math/tools/precision.hpp>
 | |
| #include <boost/math/tools/roots.hpp>
 | |
| #include <boost/range/begin.hpp>
 | |
| #include <boost/range/end.hpp>
 | |
| #include <boost/range/size.hpp>
 | |
| #include <boost/type_traits/has_pre_increment.hpp>
 | |
| #include <cstddef>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <numeric>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
 | |
| # include <initializer_list>
 | |
| #endif
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| # pragma warning (push)
 | |
| # pragma warning(disable:4127) // conditional expression is constant
 | |
| # pragma warning(disable:4389) // '==' : signed/unsigned mismatch in test_tools
 | |
| #endif // _MSC_VER
 | |
| 
 | |
| namespace boost { namespace math {
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| template <typename Dist>
 | |
| typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function);
 | |
| 
 | |
| } // Namespace detail
 | |
| 
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| class hyperexponential_distribution;
 | |
| 
 | |
| 
 | |
| namespace /*<unnamed>*/ { namespace hyperexp_detail {
 | |
| 
 | |
| template <typename T>
 | |
| void normalize(std::vector<T>& v)
 | |
| {
 | |
|    if(!v.size())
 | |
|       return;  // Our error handlers will get this later
 | |
|     const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0));
 | |
|     T final_sum = 0;
 | |
|     const typename std::vector<T>::iterator end = --v.end();
 | |
|     for (typename std::vector<T>::iterator it = v.begin();
 | |
|          it != end;
 | |
|          ++it)
 | |
|     {
 | |
|         *it /= sum;
 | |
|         final_sum += *it;
 | |
|     }
 | |
|     *end = 1 - final_sum;  // avoids round off errors, ensures the probs really do sum to 1.
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| bool check_probabilities(char const* function, std::vector<RealT> const& probabilities, RealT* presult, PolicyT const& pol)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     const std::size_t n = probabilities.size();
 | |
|     RealT sum = 0;
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         if (probabilities[i] < 0
 | |
|             || probabilities[i] > 1
 | |
|             || !(boost::math::isfinite)(probabilities[i]))
 | |
|         {
 | |
|             *presult = policies::raise_domain_error<RealT>(function,
 | |
|                                                            "The elements of parameter \"probabilities\" must be >= 0 and <= 1, but at least one of them was: %1%.",
 | |
|                                                            probabilities[i],
 | |
|                                                            pol);
 | |
|             return false;
 | |
|         }
 | |
|         sum += probabilities[i];
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // We try to keep phase probabilities correctly normalized in the distribution constructors,
 | |
|     // however in practice we have to allow for a very slight divergence from a sum of exactly 1:
 | |
|     //
 | |
|     if (fabs(sum - 1) > tools::epsilon<RealT>() * 2)
 | |
|     {
 | |
|         *presult = policies::raise_domain_error<RealT>(function,
 | |
|                                                        "The elements of parameter \"probabilities\" must sum to 1, but their sum is: %1%.",
 | |
|                                                        sum,
 | |
|                                                        pol);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| bool check_rates(char const* function, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
 | |
| {
 | |
|     const std::size_t n = rates.size();
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         if (rates[i] <= 0
 | |
|             || !(boost::math::isfinite)(rates[i]))
 | |
|         {
 | |
|             *presult = policies::raise_domain_error<RealT>(function,
 | |
|                                                            "The elements of parameter \"rates\" must be > 0, but at least one of them is: %1%.",
 | |
|                                                            rates[i],
 | |
|                                                            pol);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| bool check_dist(char const* function, std::vector<RealT> const& probabilities, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     if (probabilities.size() != rates.size())
 | |
|     {
 | |
|         *presult = policies::raise_domain_error<RealT>(function,
 | |
|                                                        "The parameters \"probabilities\" and \"rates\" must have the same length, but their size differ by: %1%.",
 | |
|                                                        fabs(static_cast<RealT>(probabilities.size())-static_cast<RealT>(rates.size())),
 | |
|                                                        pol);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return check_probabilities(function, probabilities, presult, pol)
 | |
|            && check_rates(function, rates, presult, pol);
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| bool check_x(char const* function, RealT x, RealT* presult, PolicyT const& pol)
 | |
| {
 | |
|     if (x < 0 || (boost::math::isnan)(x))
 | |
|     {
 | |
|         *presult = policies::raise_domain_error<RealT>(function, "The random variable must be >= 0, but is: %1%.", x, pol);
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| bool check_probability(char const* function, RealT p, RealT* presult, PolicyT const& pol)
 | |
| {
 | |
|     if (p < 0 || p > 1 || (boost::math::isnan)(p))
 | |
|     {
 | |
|         *presult = policies::raise_domain_error<RealT>(function, "The probability be >= 0 and <= 1, but is: %1%.", p, pol);
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT quantile_impl(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p, bool comp)
 | |
| {
 | |
|     // Don't have a closed form so try to numerically solve the inverse CDF...
 | |
| 
 | |
|     typedef typename policies::evaluation<RealT, PolicyT>::type value_type;
 | |
|     typedef typename policies::normalise<PolicyT,
 | |
|                                          policies::promote_float<false>,
 | |
|                                          policies::promote_double<false>,
 | |
|                                          policies::discrete_quantile<>,
 | |
|                                          policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|     static const char* function = comp ? "boost::math::quantile(const boost::math::complemented2_type<boost::math::hyperexponential_distribution<%1%>, %1%>&)"
 | |
|                                        : "boost::math::quantile(const boost::math::hyperexponential_distribution<%1%>&, %1%)";
 | |
| 
 | |
|     RealT result = 0;
 | |
| 
 | |
|     if (!check_probability(function, p, &result, PolicyT()))
 | |
|     {
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     const std::size_t n = dist.num_phases();
 | |
|     const std::vector<RealT> probs = dist.probabilities();
 | |
|     const std::vector<RealT> rates = dist.rates();
 | |
| 
 | |
|     // A possible (but inaccurate) approximation is given below, where the
 | |
|     // quantile is given by the weighted sum of exponential quantiles:
 | |
|     RealT guess = 0;
 | |
|     if (comp)
 | |
|     {
 | |
|         for (std::size_t i = 0; i < n; ++i)
 | |
|         {
 | |
|             const exponential_distribution<RealT,PolicyT> exp(rates[i]);
 | |
| 
 | |
|             guess += probs[i]*quantile(complement(exp, p));
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for (std::size_t i = 0; i < n; ++i)
 | |
|         {
 | |
|             const exponential_distribution<RealT,PolicyT> exp(rates[i]);
 | |
| 
 | |
|             guess += probs[i]*quantile(exp, p);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Fast return in case the Hyper-Exponential is essentially an Exponential
 | |
|     if (n == 1)
 | |
|     {
 | |
|         return guess;
 | |
|     }
 | |
| 
 | |
|     value_type q;
 | |
|     q = detail::generic_quantile(hyperexponential_distribution<RealT,forwarding_policy>(probs, rates),
 | |
|                                  p,
 | |
|                                  guess,
 | |
|                                  comp,
 | |
|                                  function);
 | |
| 
 | |
|     result = policies::checked_narrowing_cast<RealT,forwarding_policy>(q, function);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| }} // Namespace <unnamed>::hyperexp_detail
 | |
| 
 | |
| 
 | |
| template <typename RealT = double, typename PolicyT = policies::policy<> >
 | |
| class hyperexponential_distribution
 | |
| {
 | |
|     public: typedef RealT value_type;
 | |
|     public: typedef PolicyT policy_type;
 | |
| 
 | |
| 
 | |
|     public: hyperexponential_distribution()
 | |
|     : probs_(1, 1),
 | |
|       rates_(1, 1)
 | |
|     {
 | |
|         RealT err;
 | |
|         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
 | |
|                                     probs_,
 | |
|                                     rates_,
 | |
|                                     &err,
 | |
|                                     PolicyT());
 | |
|     }
 | |
| 
 | |
|     // Four arg constructor: no ambiguity here, the arguments must be two pairs of iterators:
 | |
|     public: template <typename ProbIterT, typename RateIterT>
 | |
|             hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,
 | |
|                                           RateIterT rate_first, RateIterT rate_last)
 | |
|     : probs_(prob_first, prob_last),
 | |
|       rates_(rate_first, rate_last)
 | |
|     {
 | |
|         hyperexp_detail::normalize(probs_);
 | |
|         RealT err;
 | |
|         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
 | |
|                                     probs_,
 | |
|                                     rates_,
 | |
|                                     &err,
 | |
|                                     PolicyT());
 | |
|     }
 | |
| 
 | |
|     // Two arg constructor from 2 ranges, we SFINAE this out of existance if
 | |
|     // either argument type is incrementable as in that case the type is
 | |
|     // probably an iterator:
 | |
|     public: template <typename ProbRangeT, typename RateRangeT>
 | |
|             hyperexponential_distribution(ProbRangeT const& prob_range,
 | |
|                                           RateRangeT const& rate_range,
 | |
|                                           typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0)
 | |
|     : probs_(boost::begin(prob_range), boost::end(prob_range)),
 | |
|       rates_(boost::begin(rate_range), boost::end(rate_range))
 | |
|     {
 | |
|         hyperexp_detail::normalize(probs_);
 | |
| 
 | |
|         RealT err;
 | |
|         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
 | |
|                                     probs_,
 | |
|                                     rates_,
 | |
|                                     &err,
 | |
|                                     PolicyT());
 | |
|     }
 | |
| 
 | |
|     // Two arg constructor for a pair of iterators: we SFINAE this out of
 | |
|     // existance if neither argument types are incrementable.
 | |
|     // Note that we allow different argument types here to allow for
 | |
|     // construction from an array plus a pointer into that array.
 | |
|     public: template <typename RateIterT, typename RateIterT2>
 | |
|             hyperexponential_distribution(RateIterT const& rate_first, 
 | |
|                                           RateIterT2 const& rate_last, 
 | |
|                                           typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value || boost::has_pre_increment<RateIterT2>::value>::type* = 0)
 | |
|     : probs_(std::distance(rate_first, rate_last), 1), // will be normalized below
 | |
|       rates_(rate_first, rate_last)
 | |
|     {
 | |
|         hyperexp_detail::normalize(probs_);
 | |
| 
 | |
|         RealT err;
 | |
|         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
 | |
|                                     probs_,
 | |
|                                     rates_,
 | |
|                                     &err,
 | |
|                                     PolicyT());
 | |
|     }
 | |
| 
 | |
| #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
 | |
|       // Initializer list constructor: allows for construction from array literals:
 | |
| public: hyperexponential_distribution(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2)
 | |
|       : probs_(l1.begin(), l1.end()),
 | |
|         rates_(l2.begin(), l2.end())
 | |
|       {
 | |
|          hyperexp_detail::normalize(probs_);
 | |
| 
 | |
|          RealT err;
 | |
|          hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
 | |
|             probs_,
 | |
|             rates_,
 | |
|             &err,
 | |
|             PolicyT());
 | |
|       }
 | |
| 
 | |
| public: hyperexponential_distribution(std::initializer_list<RealT> l1)
 | |
|       : probs_(l1.size(), 1),
 | |
|         rates_(l1.begin(), l1.end())
 | |
|       {
 | |
|          hyperexp_detail::normalize(probs_);
 | |
| 
 | |
|          RealT err;
 | |
|          hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
 | |
|             probs_,
 | |
|             rates_,
 | |
|             &err,
 | |
|             PolicyT());
 | |
|       }
 | |
| #endif // !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
 | |
| 
 | |
|     // Single argument constructor: argument must be a range.
 | |
|     public: template <typename RateRangeT>
 | |
|     hyperexponential_distribution(RateRangeT const& rate_range)
 | |
|     : probs_(boost::size(rate_range), 1), // will be normalized below
 | |
|       rates_(boost::begin(rate_range), boost::end(rate_range))
 | |
|     {
 | |
|         hyperexp_detail::normalize(probs_);
 | |
| 
 | |
|         RealT err;
 | |
|         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
 | |
|                                     probs_,
 | |
|                                     rates_,
 | |
|                                     &err,
 | |
|                                     PolicyT());
 | |
|     }
 | |
| 
 | |
|     public: std::vector<RealT> probabilities() const
 | |
|     {
 | |
|         return probs_;
 | |
|     }
 | |
| 
 | |
|     public: std::vector<RealT> rates() const
 | |
|     {
 | |
|         return rates_;
 | |
|     }
 | |
| 
 | |
|     public: std::size_t num_phases() const
 | |
|     {
 | |
|         return rates_.size();
 | |
|     }
 | |
| 
 | |
| 
 | |
|     private: std::vector<RealT> probs_;
 | |
|     private: std::vector<RealT> rates_;
 | |
| }; // class hyperexponential_distribution
 | |
| 
 | |
| 
 | |
| // Convenient type synonym for double.
 | |
| typedef hyperexponential_distribution<double> hyperexponential;
 | |
| 
 | |
| 
 | |
| // Range of permissible values for random variable x
 | |
| template <typename RealT, typename PolicyT>
 | |
| std::pair<RealT,RealT> range(hyperexponential_distribution<RealT,PolicyT> const&)
 | |
| {
 | |
|     if (std::numeric_limits<RealT>::has_infinity)
 | |
|     {
 | |
|         return std::make_pair(static_cast<RealT>(0), std::numeric_limits<RealT>::infinity()); // 0 to +inf.
 | |
|     }
 | |
| 
 | |
|     return std::make_pair(static_cast<RealT>(0), tools::max_value<RealT>()); // 0 to +<max value>
 | |
| }
 | |
| 
 | |
| // Range of supported values for random variable x.
 | |
| // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
 | |
| template <typename RealT, typename PolicyT>
 | |
| std::pair<RealT,RealT> support(hyperexponential_distribution<RealT,PolicyT> const&)
 | |
| {
 | |
|     return std::make_pair(tools::min_value<RealT>(), tools::max_value<RealT>()); // <min value> to +<max value>.
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT pdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     RealT result = 0;
 | |
| 
 | |
|     if (!hyperexp_detail::check_x("boost::math::pdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
 | |
|     {
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     const std::size_t n = dist.num_phases();
 | |
|     const std::vector<RealT> probs = dist.probabilities();
 | |
|     const std::vector<RealT> rates = dist.rates();
 | |
| 
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         const exponential_distribution<RealT,PolicyT> exp(rates[i]);
 | |
| 
 | |
|         result += probs[i]*pdf(exp, x);
 | |
|         //result += probs[i]*rates[i]*exp(-rates[i]*x);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT cdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
 | |
| {
 | |
|     RealT result = 0;
 | |
| 
 | |
|     if (!hyperexp_detail::check_x("boost::math::cdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
 | |
|     {
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     const std::size_t n = dist.num_phases();
 | |
|     const std::vector<RealT> probs = dist.probabilities();
 | |
|     const std::vector<RealT> rates = dist.rates();
 | |
| 
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         const exponential_distribution<RealT,PolicyT> exp(rates[i]);
 | |
| 
 | |
|         result += probs[i]*cdf(exp, x);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT quantile(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p)
 | |
| {
 | |
|     return hyperexp_detail::quantile_impl(dist, p , false);
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT cdf(complemented2_type<hyperexponential_distribution<RealT,PolicyT>, RealT> const& c)
 | |
| {
 | |
|     RealT const& x = c.param;
 | |
|     hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
 | |
| 
 | |
|     RealT result = 0;
 | |
| 
 | |
|     if (!hyperexp_detail::check_x("boost::math::cdf(boost::math::complemented2_type<const boost::math::hyperexponential_distribution<%1%>&, %1%>)", x, &result, PolicyT()))
 | |
|     {
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     const std::size_t n = dist.num_phases();
 | |
|     const std::vector<RealT> probs = dist.probabilities();
 | |
|     const std::vector<RealT> rates = dist.rates();
 | |
| 
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         const exponential_distribution<RealT,PolicyT> exp(rates[i]);
 | |
| 
 | |
|         result += probs[i]*cdf(complement(exp, x));
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT quantile(complemented2_type<hyperexponential_distribution<RealT, PolicyT>, RealT> const& c)
 | |
| {
 | |
|     RealT const& p = c.param;
 | |
|     hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
 | |
| 
 | |
|     return hyperexp_detail::quantile_impl(dist, p , true);
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT mean(hyperexponential_distribution<RealT, PolicyT> const& dist)
 | |
| {
 | |
|     RealT result = 0;
 | |
| 
 | |
|     const std::size_t n = dist.num_phases();
 | |
|     const std::vector<RealT> probs = dist.probabilities();
 | |
|     const std::vector<RealT> rates = dist.rates();
 | |
| 
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         const exponential_distribution<RealT,PolicyT> exp(rates[i]);
 | |
| 
 | |
|         result += probs[i]*mean(exp);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT variance(hyperexponential_distribution<RealT, PolicyT> const& dist)
 | |
| {
 | |
|     RealT result = 0;
 | |
| 
 | |
|     const std::size_t n = dist.num_phases();
 | |
|     const std::vector<RealT> probs = dist.probabilities();
 | |
|     const std::vector<RealT> rates = dist.rates();
 | |
| 
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         result += probs[i]/(rates[i]*rates[i]);
 | |
|     }
 | |
| 
 | |
|     const RealT mean = boost::math::mean(dist);
 | |
| 
 | |
|     result = 2*result-mean*mean;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT skewness(hyperexponential_distribution<RealT,PolicyT> const& dist)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     const std::size_t n = dist.num_phases();
 | |
|     const std::vector<RealT> probs = dist.probabilities();
 | |
|     const std::vector<RealT> rates = dist.rates();
 | |
| 
 | |
|     RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
 | |
|     RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
 | |
|     RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         const RealT p = probs[i];
 | |
|         const RealT r = rates[i];
 | |
|         const RealT r2 = r*r;
 | |
|         const RealT r3 = r2*r;
 | |
| 
 | |
|         s1 += p/r;
 | |
|         s2 += p/r2;
 | |
|         s3 += p/r3;
 | |
|     }
 | |
| 
 | |
|     const RealT s1s1 = s1*s1;
 | |
| 
 | |
|     const RealT num = (6*s3 - (3*(2*s2 - s1s1) + s1s1)*s1);
 | |
|     const RealT den = (2*s2 - s1s1);
 | |
| 
 | |
|     return num / pow(den, static_cast<RealT>(1.5));
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT kurtosis(hyperexponential_distribution<RealT,PolicyT> const& dist)
 | |
| {
 | |
|     const std::size_t n = dist.num_phases();
 | |
|     const std::vector<RealT> probs = dist.probabilities();
 | |
|     const std::vector<RealT> rates = dist.rates();
 | |
| 
 | |
|     RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
 | |
|     RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
 | |
|     RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
 | |
|     RealT s4 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^4}
 | |
|     for (std::size_t i = 0; i < n; ++i)
 | |
|     {
 | |
|         const RealT p = probs[i];
 | |
|         const RealT r = rates[i];
 | |
|         const RealT r2 = r*r;
 | |
|         const RealT r3 = r2*r;
 | |
|         const RealT r4 = r3*r;
 | |
| 
 | |
|         s1 += p/r;
 | |
|         s2 += p/r2;
 | |
|         s3 += p/r3;
 | |
|         s4 += p/r4;
 | |
|     }
 | |
| 
 | |
|     const RealT s1s1 = s1*s1;
 | |
| 
 | |
|     const RealT num = (24*s4 - 24*s3*s1 + 3*(2*(2*s2 - s1s1) + s1s1)*s1s1);
 | |
|     const RealT den = (2*s2 - s1s1);
 | |
| 
 | |
|     return num/(den*den);
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT kurtosis_excess(hyperexponential_distribution<RealT,PolicyT> const& dist)
 | |
| {
 | |
|     return kurtosis(dist) - 3;
 | |
| }
 | |
| 
 | |
| template <typename RealT, typename PolicyT>
 | |
| RealT mode(hyperexponential_distribution<RealT,PolicyT> const& /*dist*/)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| }} // namespace boost::math
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning (pop)
 | |
| #endif
 | |
| // This include must be at the end, *after* the accessors
 | |
| // for this distribution have been defined, in order to
 | |
| // keep compilers that support two-phase lookup happy.
 | |
| #include <boost/math/distributions/detail/derived_accessors.hpp>
 | |
| #include <boost/math/distributions/detail/generic_quantile.hpp>
 | |
| 
 | |
| #endif // BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL
 | 
