1000 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			1000 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // boost\math\distributions\non_central_chi_squared.hpp
 | |
| 
 | |
| // Copyright John Maddock 2008.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
 | |
| #define BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
 | |
| 
 | |
| #include <boost/math/distributions/fwd.hpp>
 | |
| #include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
 | |
| #include <boost/math/special_functions/bessel.hpp> // for cyl_bessel_i
 | |
| #include <boost/math/special_functions/round.hpp> // for iround
 | |
| #include <boost/math/distributions/complement.hpp> // complements
 | |
| #include <boost/math/distributions/chi_squared.hpp> // central distribution
 | |
| #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
 | |
| #include <boost/math/special_functions/fpclassify.hpp> // isnan.
 | |
| #include <boost/math/tools/roots.hpp> // for root finding.
 | |
| #include <boost/math/distributions/detail/generic_mode.hpp>
 | |
| #include <boost/math/distributions/detail/generic_quantile.hpp>
 | |
| 
 | |
| namespace boost
 | |
| {
 | |
|    namespace math
 | |
|    {
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       class non_central_chi_squared_distribution;
 | |
| 
 | |
|       namespace detail{
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_chi_square_q(T x, T f, T theta, const Policy& pol, T init_sum = 0)
 | |
|          {
 | |
|             //
 | |
|             // Computes the complement of the Non-Central Chi-Square
 | |
|             // Distribution CDF by summing a weighted sum of complements
 | |
|             // of the central-distributions.  The weighting factor is
 | |
|             // a Poisson Distribution.
 | |
|             //
 | |
|             // This is an application of the technique described in:
 | |
|             //
 | |
|             // Computing discrete mixtures of continuous
 | |
|             // distributions: noncentral chisquare, noncentral t
 | |
|             // and the distribution of the square of the sample
 | |
|             // multiple correlation coeficient.
 | |
|             // D. Benton, K. Krishnamoorthy.
 | |
|             // Computational Statistics & Data Analysis 43 (2003) 249 - 267
 | |
|             //
 | |
|             BOOST_MATH_STD_USING
 | |
| 
 | |
|             // Special case:
 | |
|             if(x == 0)
 | |
|                return 1;
 | |
| 
 | |
|             //
 | |
|             // Initialize the variables we'll be using:
 | |
|             //
 | |
|             T lambda = theta / 2;
 | |
|             T del = f / 2;
 | |
|             T y = x / 2;
 | |
|             boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | |
|             T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | |
|             T sum = init_sum;
 | |
|             //
 | |
|             // k is the starting location for iteration, we'll
 | |
|             // move both forwards and backwards from this point.
 | |
|             // k is chosen as the peek of the Poisson weights, which
 | |
|             // will occur *before* the largest term.
 | |
|             //
 | |
|             int k = iround(lambda, pol);
 | |
|             // Forwards and backwards Poisson weights:
 | |
|             T poisf = boost::math::gamma_p_derivative(static_cast<T>(1 + k), lambda, pol);
 | |
|             T poisb = poisf * k / lambda;
 | |
|             // Initial forwards central chi squared term:
 | |
|             T gamf = boost::math::gamma_q(del + k, y, pol);
 | |
|             // Forwards and backwards recursion terms on the central chi squared:
 | |
|             T xtermf = boost::math::gamma_p_derivative(del + 1 + k, y, pol);
 | |
|             T xtermb = xtermf * (del + k) / y;
 | |
|             // Initial backwards central chi squared term:
 | |
|             T gamb = gamf - xtermb;
 | |
| 
 | |
|             //
 | |
|             // Forwards iteration first, this is the
 | |
|             // stable direction for the gamma function
 | |
|             // recurrences:
 | |
|             //
 | |
|             int i;
 | |
|             for(i = k; static_cast<boost::uintmax_t>(i-k) < max_iter; ++i)
 | |
|             {
 | |
|                T term = poisf * gamf;
 | |
|                sum += term;
 | |
|                poisf *= lambda / (i + 1);
 | |
|                gamf += xtermf;
 | |
|                xtermf *= y / (del + i + 1);
 | |
|                if(((sum == 0) || (fabs(term / sum) < errtol)) && (term >= poisf * gamf))
 | |
|                   break;
 | |
|             }
 | |
|             //Error check:
 | |
|             if(static_cast<boost::uintmax_t>(i-k) >= max_iter)
 | |
|                return policies::raise_evaluation_error(
 | |
|                   "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
 | |
|                   "Series did not converge, closest value was %1%", sum, pol);
 | |
|             //
 | |
|             // Now backwards iteration: the gamma
 | |
|             // function recurrences are unstable in this
 | |
|             // direction, we rely on the terms deminishing in size
 | |
|             // faster than we introduce cancellation errors.
 | |
|             // For this reason it's very important that we start
 | |
|             // *before* the largest term so that backwards iteration
 | |
|             // is strictly converging.
 | |
|             //
 | |
|             for(i = k - 1; i >= 0; --i)
 | |
|             {
 | |
|                T term = poisb * gamb;
 | |
|                sum += term;
 | |
|                poisb *= i / lambda;
 | |
|                xtermb *= (del + i) / y;
 | |
|                gamb -= xtermb;
 | |
|                if((sum == 0) || (fabs(term / sum) < errtol))
 | |
|                   break;
 | |
|             }
 | |
| 
 | |
|             return sum;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_chi_square_p_ding(T x, T f, T theta, const Policy& pol, T init_sum = 0)
 | |
|          {
 | |
|             //
 | |
|             // This is an implementation of:
 | |
|             //
 | |
|             // Algorithm AS 275:
 | |
|             // Computing the Non-Central #2 Distribution Function
 | |
|             // Cherng G. Ding
 | |
|             // Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482.
 | |
|             //
 | |
|             // This uses a stable forward iteration to sum the
 | |
|             // CDF, unfortunately this can not be used for large
 | |
|             // values of the non-centrality parameter because:
 | |
|             // * The first term may underfow to zero.
 | |
|             // * We may need an extra-ordinary number of terms
 | |
|             //   before we reach the first *significant* term.
 | |
|             //
 | |
|             BOOST_MATH_STD_USING
 | |
|             // Special case:
 | |
|             if(x == 0)
 | |
|                return 0;
 | |
|             T tk = boost::math::gamma_p_derivative(f/2 + 1, x/2, pol);
 | |
|             T lambda = theta / 2;
 | |
|             T vk = exp(-lambda);
 | |
|             T uk = vk;
 | |
|             T sum = init_sum + tk * vk;
 | |
|             if(sum == 0)
 | |
|                return sum;
 | |
| 
 | |
|             boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | |
|             T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | |
| 
 | |
|             int i;
 | |
|             T lterm(0), term(0);
 | |
|             for(i = 1; static_cast<boost::uintmax_t>(i) < max_iter; ++i)
 | |
|             {
 | |
|                tk = tk * x / (f + 2 * i);
 | |
|                uk = uk * lambda / i;
 | |
|                vk = vk + uk;
 | |
|                lterm = term;
 | |
|                term = vk * tk;
 | |
|                sum += term;
 | |
|                if((fabs(term / sum) < errtol) && (term <= lterm))
 | |
|                   break;
 | |
|             }
 | |
|             //Error check:
 | |
|             if(static_cast<boost::uintmax_t>(i) >= max_iter)
 | |
|                return policies::raise_evaluation_error(
 | |
|                   "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
 | |
|                   "Series did not converge, closest value was %1%", sum, pol);
 | |
|             return sum;
 | |
|          }
 | |
| 
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_chi_square_p(T y, T n, T lambda, const Policy& pol, T init_sum)
 | |
|          {
 | |
|             //
 | |
|             // This is taken more or less directly from:
 | |
|             //
 | |
|             // Computing discrete mixtures of continuous
 | |
|             // distributions: noncentral chisquare, noncentral t
 | |
|             // and the distribution of the square of the sample
 | |
|             // multiple correlation coeficient.
 | |
|             // D. Benton, K. Krishnamoorthy.
 | |
|             // Computational Statistics & Data Analysis 43 (2003) 249 - 267
 | |
|             //
 | |
|             // We're summing a Poisson weighting term multiplied by
 | |
|             // a central chi squared distribution.
 | |
|             //
 | |
|             BOOST_MATH_STD_USING
 | |
|             // Special case:
 | |
|             if(y == 0)
 | |
|                return 0;
 | |
|             boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | |
|             T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | |
|             T errorf(0), errorb(0);
 | |
| 
 | |
|             T x = y / 2;
 | |
|             T del = lambda / 2;
 | |
|             //
 | |
|             // Starting location for the iteration, we'll iterate
 | |
|             // both forwards and backwards from this point.  The
 | |
|             // location chosen is the maximum of the Poisson weight
 | |
|             // function, which ocurrs *after* the largest term in the
 | |
|             // sum.
 | |
|             //
 | |
|             int k = iround(del, pol);
 | |
|             T a = n / 2 + k;
 | |
|             // Central chi squared term for forward iteration:
 | |
|             T gamkf = boost::math::gamma_p(a, x, pol);
 | |
| 
 | |
|             if(lambda == 0)
 | |
|                return gamkf;
 | |
|             // Central chi squared term for backward iteration:
 | |
|             T gamkb = gamkf;
 | |
|             // Forwards Poisson weight:
 | |
|             T poiskf = gamma_p_derivative(static_cast<T>(k+1), del, pol);
 | |
|             // Backwards Poisson weight:
 | |
|             T poiskb = poiskf;
 | |
|             // Forwards gamma function recursion term:
 | |
|             T xtermf = boost::math::gamma_p_derivative(a, x, pol);
 | |
|             // Backwards gamma function recursion term:
 | |
|             T xtermb = xtermf * x / a;
 | |
|             T sum = init_sum + poiskf * gamkf;
 | |
|             if(sum == 0)
 | |
|                return sum;
 | |
|             int i = 1;
 | |
|             //
 | |
|             // Backwards recursion first, this is the stable
 | |
|             // direction for gamma function recurrences:
 | |
|             //
 | |
|             while(i <= k)
 | |
|             {
 | |
|                xtermb *= (a - i + 1) / x;
 | |
|                gamkb += xtermb;
 | |
|                poiskb = poiskb * (k - i + 1) / del;
 | |
|                errorf = errorb;
 | |
|                errorb = gamkb * poiskb;
 | |
|                sum += errorb;
 | |
|                if((fabs(errorb / sum) < errtol) && (errorb <= errorf))
 | |
|                   break;
 | |
|                ++i;
 | |
|             }
 | |
|             i = 1;
 | |
|             //
 | |
|             // Now forwards recursion, the gamma function
 | |
|             // recurrence relation is unstable in this direction,
 | |
|             // so we rely on the magnitude of successive terms
 | |
|             // decreasing faster than we introduce cancellation error.
 | |
|             // For this reason it's vital that k is chosen to be *after*
 | |
|             // the largest term, so that successive forward iterations
 | |
|             // are strictly (and rapidly) converging.
 | |
|             //
 | |
|             do
 | |
|             {
 | |
|                xtermf = xtermf * x / (a + i - 1);
 | |
|                gamkf = gamkf - xtermf;
 | |
|                poiskf = poiskf * del / (k + i);
 | |
|                errorf = poiskf * gamkf;
 | |
|                sum += errorf;
 | |
|                ++i;
 | |
|             }while((fabs(errorf / sum) > errtol) && (static_cast<boost::uintmax_t>(i) < max_iter));
 | |
| 
 | |
|             //Error check:
 | |
|             if(static_cast<boost::uintmax_t>(i) >= max_iter)
 | |
|                return policies::raise_evaluation_error(
 | |
|                   "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
 | |
|                   "Series did not converge, closest value was %1%", sum, pol);
 | |
| 
 | |
|             return sum;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_chi_square_pdf(T x, T n, T lambda, const Policy& pol)
 | |
|          {
 | |
|             //
 | |
|             // As above but for the PDF:
 | |
|             //
 | |
|             BOOST_MATH_STD_USING
 | |
|             boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | |
|             T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | |
|             T x2 = x / 2;
 | |
|             T n2 = n / 2;
 | |
|             T l2 = lambda / 2;
 | |
|             T sum = 0;
 | |
|             int k = itrunc(l2);
 | |
|             T pois = gamma_p_derivative(static_cast<T>(k + 1), l2, pol) * gamma_p_derivative(static_cast<T>(n2 + k), x2);
 | |
|             if(pois == 0)
 | |
|                return 0;
 | |
|             T poisb = pois;
 | |
|             for(int i = k; ; ++i)
 | |
|             {
 | |
|                sum += pois;
 | |
|                if(pois / sum < errtol)
 | |
|                   break;
 | |
|                if(static_cast<boost::uintmax_t>(i - k) >= max_iter)
 | |
|                   return policies::raise_evaluation_error(
 | |
|                      "pdf(non_central_chi_squared_distribution<%1%>, %1%)",
 | |
|                      "Series did not converge, closest value was %1%", sum, pol);
 | |
|                pois *= l2 * x2 / ((i + 1) * (n2 + i));
 | |
|             }
 | |
|             for(int i = k - 1; i >= 0; --i)
 | |
|             {
 | |
|                poisb *= (i + 1) * (n2 + i) / (l2 * x2);
 | |
|                sum += poisb;
 | |
|                if(poisb / sum < errtol)
 | |
|                   break;
 | |
|             }
 | |
|             return sum / 2;
 | |
|          }
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          inline RealType non_central_chi_squared_cdf(RealType x, RealType k, RealType l, bool invert, const Policy&)
 | |
|          {
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy,
 | |
|                policies::promote_float<false>,
 | |
|                policies::promote_double<false>,
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|             BOOST_MATH_STD_USING
 | |
|             value_type result;
 | |
|             if(l == 0)
 | |
|               return invert == false ? cdf(boost::math::chi_squared_distribution<RealType, Policy>(k), x) : cdf(complement(boost::math::chi_squared_distribution<RealType, Policy>(k), x));
 | |
|             else if(x > k + l)
 | |
|             {
 | |
|                // Complement is the smaller of the two:
 | |
|                result = detail::non_central_chi_square_q(
 | |
|                   static_cast<value_type>(x),
 | |
|                   static_cast<value_type>(k),
 | |
|                   static_cast<value_type>(l),
 | |
|                   forwarding_policy(),
 | |
|                   static_cast<value_type>(invert ? 0 : -1));
 | |
|                invert = !invert;
 | |
|             }
 | |
|             else if(l < 200)
 | |
|             {
 | |
|                // For small values of the non-centrality parameter
 | |
|                // we can use Ding's method:
 | |
|                result = detail::non_central_chi_square_p_ding(
 | |
|                   static_cast<value_type>(x),
 | |
|                   static_cast<value_type>(k),
 | |
|                   static_cast<value_type>(l),
 | |
|                   forwarding_policy(),
 | |
|                   static_cast<value_type>(invert ? -1 : 0));
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                // For largers values of the non-centrality
 | |
|                // parameter Ding's method will consume an
 | |
|                // extra-ordinary number of terms, and worse
 | |
|                // may return zero when the result is in fact
 | |
|                // finite, use Krishnamoorthy's method instead:
 | |
|                result = detail::non_central_chi_square_p(
 | |
|                   static_cast<value_type>(x),
 | |
|                   static_cast<value_type>(k),
 | |
|                   static_cast<value_type>(l),
 | |
|                   forwarding_policy(),
 | |
|                   static_cast<value_type>(invert ? -1 : 0));
 | |
|             }
 | |
|             if(invert)
 | |
|                result = -result;
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result,
 | |
|                "boost::math::non_central_chi_squared_cdf<%1%>(%1%, %1%, %1%)");
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          struct nccs_quantile_functor
 | |
|          {
 | |
|             nccs_quantile_functor(const non_central_chi_squared_distribution<T,Policy>& d, T t, bool c)
 | |
|                : dist(d), target(t), comp(c) {}
 | |
| 
 | |
|             T operator()(const T& x)
 | |
|             {
 | |
|                return comp ?
 | |
|                   target - cdf(complement(dist, x))
 | |
|                   : cdf(dist, x) - target;
 | |
|             }
 | |
| 
 | |
|          private:
 | |
|             non_central_chi_squared_distribution<T,Policy> dist;
 | |
|             T target;
 | |
|             bool comp;
 | |
|          };
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          RealType nccs_quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p, bool comp)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             static const char* function = "quantile(non_central_chi_squared_distribution<%1%>, %1%)";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy,
 | |
|                policies::promote_float<false>,
 | |
|                policies::promote_double<false>,
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|             value_type k = dist.degrees_of_freedom();
 | |
|             value_type l = dist.non_centrality();
 | |
|             value_type r;
 | |
|             if(!detail::check_df(
 | |
|                function,
 | |
|                k, &r, Policy())
 | |
|                ||
 | |
|             !detail::check_non_centrality(
 | |
|                function,
 | |
|                l,
 | |
|                &r,
 | |
|                Policy())
 | |
|                ||
 | |
|             !detail::check_probability(
 | |
|                function,
 | |
|                static_cast<value_type>(p),
 | |
|                &r,
 | |
|                Policy()))
 | |
|                   return (RealType)r;
 | |
|             //
 | |
|             // Special cases get short-circuited first:
 | |
|             //
 | |
|             if(p == 0)
 | |
|                return comp ? policies::raise_overflow_error<RealType>(function, 0, Policy()) : 0;
 | |
|             if(p == 1)
 | |
|                return comp ? 0 : policies::raise_overflow_error<RealType>(function, 0, Policy());
 | |
|             //
 | |
|             // This is Pearson's approximation to the quantile, see
 | |
|             // Pearson, E. S. (1959) "Note on an approximation to the distribution of
 | |
|             // noncentral chi squared", Biometrika 46: 364.
 | |
|             // See also:
 | |
|             // "A comparison of approximations to percentiles of the noncentral chi2-distribution",
 | |
|             // Hardeo Sahai and Mario Miguel Ojeda, Revista de Matematica: Teoria y Aplicaciones 2003 10(1-2) : 57-76.
 | |
|             // Note that the latter reference refers to an approximation of the CDF, when they really mean the quantile.
 | |
|             //
 | |
|             value_type b = -(l * l) / (k + 3 * l);
 | |
|             value_type c = (k + 3 * l) / (k + 2 * l);
 | |
|             value_type ff = (k + 2 * l) / (c * c);
 | |
|             value_type guess;
 | |
|             if(comp)
 | |
|             {
 | |
|                guess = b + c * quantile(complement(chi_squared_distribution<value_type, forwarding_policy>(ff), p));
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                guess = b + c * quantile(chi_squared_distribution<value_type, forwarding_policy>(ff), p);
 | |
|             }
 | |
|             //
 | |
|             // Sometimes guess goes very small or negative, in that case we have
 | |
|             // to do something else for the initial guess, this approximation
 | |
|             // was provided in a private communication from Thomas Luu, PhD candidate,
 | |
|             // University College London.  It's an asymptotic expansion for the
 | |
|             // quantile which usually gets us within an order of magnitude of the
 | |
|             // correct answer.
 | |
|             // Fast and accurate parallel computation of quantile functions for random number generation,
 | |
|             // Thomas LuuDoctorial Thesis 2016
 | |
|             // http://discovery.ucl.ac.uk/1482128/
 | |
|             //
 | |
|             if(guess < 0.005)
 | |
|             {
 | |
|                value_type pp = comp ? 1 - p : p;
 | |
|                //guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k, 2 / k);
 | |
|                guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k * boost::math::tgamma(k / 2, forwarding_policy()), (2 / k));
 | |
|                if(guess == 0)
 | |
|                   guess = tools::min_value<value_type>();
 | |
|             }
 | |
|             value_type result = detail::generic_quantile(
 | |
|                non_central_chi_squared_distribution<value_type, forwarding_policy>(k, l),
 | |
|                p,
 | |
|                guess,
 | |
|                comp,
 | |
|                function);
 | |
| 
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result,
 | |
|                function);
 | |
|          }
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          RealType nccs_pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             static const char* function = "pdf(non_central_chi_squared_distribution<%1%>, %1%)";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy,
 | |
|                policies::promote_float<false>,
 | |
|                policies::promote_double<false>,
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|             value_type k = dist.degrees_of_freedom();
 | |
|             value_type l = dist.non_centrality();
 | |
|             value_type r;
 | |
|             if(!detail::check_df(
 | |
|                function,
 | |
|                k, &r, Policy())
 | |
|                ||
 | |
|             !detail::check_non_centrality(
 | |
|                function,
 | |
|                l,
 | |
|                &r,
 | |
|                Policy())
 | |
|                ||
 | |
|             !detail::check_positive_x(
 | |
|                function,
 | |
|                (value_type)x,
 | |
|                &r,
 | |
|                Policy()))
 | |
|                   return (RealType)r;
 | |
| 
 | |
|          if(l == 0)
 | |
|             return pdf(boost::math::chi_squared_distribution<RealType, forwarding_policy>(dist.degrees_of_freedom()), x);
 | |
| 
 | |
|          // Special case:
 | |
|          if(x == 0)
 | |
|             return 0;
 | |
|          if(l > 50)
 | |
|          {
 | |
|             r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             r = log(x / l) * (k / 4 - 0.5f) - (x + l) / 2;
 | |
|             if(fabs(r) >= tools::log_max_value<RealType>() / 4)
 | |
|             {
 | |
|                r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                r = exp(r);
 | |
|                r = 0.5f * r
 | |
|                   * boost::math::cyl_bessel_i(k/2 - 1, sqrt(l * x), forwarding_policy());
 | |
|             }
 | |
|          }
 | |
|          return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                r,
 | |
|                function);
 | |
|          }
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          struct degrees_of_freedom_finder
 | |
|          {
 | |
|             degrees_of_freedom_finder(
 | |
|                RealType lam_, RealType x_, RealType p_, bool c)
 | |
|                : lam(lam_), x(x_), p(p_), comp(c) {}
 | |
| 
 | |
|             RealType operator()(const RealType& v)
 | |
|             {
 | |
|                non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
 | |
|                return comp ?
 | |
|                   RealType(p - cdf(complement(d, x)))
 | |
|                   : RealType(cdf(d, x) - p);
 | |
|             }
 | |
|          private:
 | |
|             RealType lam;
 | |
|             RealType x;
 | |
|             RealType p;
 | |
|             bool comp;
 | |
|          };
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          inline RealType find_degrees_of_freedom(
 | |
|             RealType lam, RealType x, RealType p, RealType q, const Policy& pol)
 | |
|          {
 | |
|             const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
 | |
|             if((p == 0) || (q == 0))
 | |
|             {
 | |
|                //
 | |
|                // Can't a thing if one of p and q is zero:
 | |
|                //
 | |
|                return policies::raise_evaluation_error<RealType>(function,
 | |
|                   "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%",
 | |
|                   RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
 | |
|             }
 | |
|             degrees_of_freedom_finder<RealType, Policy> f(lam, x, p < q ? p : q, p < q ? false : true);
 | |
|             tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
 | |
|             boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
 | |
|             //
 | |
|             // Pick an initial guess that we know will give us a probability
 | |
|             // right around 0.5.
 | |
|             //
 | |
|             RealType guess = x - lam;
 | |
|             if(guess < 1)
 | |
|                guess = 1;
 | |
|             std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
 | |
|                f, guess, RealType(2), false, tol, max_iter, pol);
 | |
|             RealType result = ir.first + (ir.second - ir.first) / 2;
 | |
|             if(max_iter >= policies::get_max_root_iterations<Policy>())
 | |
|             {
 | |
|                return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
 | |
|                   " or there is no answer to problem.  Current best guess is %1%", result, Policy());
 | |
|             }
 | |
|             return result;
 | |
|          }
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          struct non_centrality_finder
 | |
|          {
 | |
|             non_centrality_finder(
 | |
|                RealType v_, RealType x_, RealType p_, bool c)
 | |
|                : v(v_), x(x_), p(p_), comp(c) {}
 | |
| 
 | |
|             RealType operator()(const RealType& lam)
 | |
|             {
 | |
|                non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
 | |
|                return comp ?
 | |
|                   RealType(p - cdf(complement(d, x)))
 | |
|                   : RealType(cdf(d, x) - p);
 | |
|             }
 | |
|          private:
 | |
|             RealType v;
 | |
|             RealType x;
 | |
|             RealType p;
 | |
|             bool comp;
 | |
|          };
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          inline RealType find_non_centrality(
 | |
|             RealType v, RealType x, RealType p, RealType q, const Policy& pol)
 | |
|          {
 | |
|             const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
 | |
|             if((p == 0) || (q == 0))
 | |
|             {
 | |
|                //
 | |
|                // Can't do a thing if one of p and q is zero:
 | |
|                //
 | |
|                return policies::raise_evaluation_error<RealType>(function,
 | |
|                   "Can't find non centrality parameter when the probability is 0 or 1, only possible answer is %1%",
 | |
|                   RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
 | |
|             }
 | |
|             non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
 | |
|             tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
 | |
|             boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
 | |
|             //
 | |
|             // Pick an initial guess that we know will give us a probability
 | |
|             // right around 0.5.
 | |
|             //
 | |
|             RealType guess = x - v;
 | |
|             if(guess < 1)
 | |
|                guess = 1;
 | |
|             std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
 | |
|                f, guess, RealType(2), false, tol, max_iter, pol);
 | |
|             RealType result = ir.first + (ir.second - ir.first) / 2;
 | |
|             if(max_iter >= policies::get_max_root_iterations<Policy>())
 | |
|             {
 | |
|                return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
 | |
|                   " or there is no answer to problem.  Current best guess is %1%", result, Policy());
 | |
|             }
 | |
|             return result;
 | |
|          }
 | |
| 
 | |
|       }
 | |
| 
 | |
|       template <class RealType = double, class Policy = policies::policy<> >
 | |
|       class non_central_chi_squared_distribution
 | |
|       {
 | |
|       public:
 | |
|          typedef RealType value_type;
 | |
|          typedef Policy policy_type;
 | |
| 
 | |
|          non_central_chi_squared_distribution(RealType df_, RealType lambda) : df(df_), ncp(lambda)
 | |
|          {
 | |
|             const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::non_central_chi_squared_distribution(%1%,%1%)";
 | |
|             RealType r;
 | |
|             detail::check_df(
 | |
|                function,
 | |
|                df, &r, Policy());
 | |
|             detail::check_non_centrality(
 | |
|                function,
 | |
|                ncp,
 | |
|                &r,
 | |
|                Policy());
 | |
|          } // non_central_chi_squared_distribution constructor.
 | |
| 
 | |
|          RealType degrees_of_freedom() const
 | |
|          { // Private data getter function.
 | |
|             return df;
 | |
|          }
 | |
|          RealType non_centrality() const
 | |
|          { // Private data getter function.
 | |
|             return ncp;
 | |
|          }
 | |
|          static RealType find_degrees_of_freedom(RealType lam, RealType x, RealType p)
 | |
|          {
 | |
|             const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type eval_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy,
 | |
|                policies::promote_float<false>,
 | |
|                policies::promote_double<false>,
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
|             eval_type result = detail::find_degrees_of_freedom(
 | |
|                static_cast<eval_type>(lam),
 | |
|                static_cast<eval_type>(x),
 | |
|                static_cast<eval_type>(p),
 | |
|                static_cast<eval_type>(1-p),
 | |
|                forwarding_policy());
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result,
 | |
|                function);
 | |
|          }
 | |
|          template <class A, class B, class C>
 | |
|          static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
 | |
|          {
 | |
|             const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type eval_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy,
 | |
|                policies::promote_float<false>,
 | |
|                policies::promote_double<false>,
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
|             eval_type result = detail::find_degrees_of_freedom(
 | |
|                static_cast<eval_type>(c.dist),
 | |
|                static_cast<eval_type>(c.param1),
 | |
|                static_cast<eval_type>(1-c.param2),
 | |
|                static_cast<eval_type>(c.param2),
 | |
|                forwarding_policy());
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result,
 | |
|                function);
 | |
|          }
 | |
|          static RealType find_non_centrality(RealType v, RealType x, RealType p)
 | |
|          {
 | |
|             const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type eval_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy,
 | |
|                policies::promote_float<false>,
 | |
|                policies::promote_double<false>,
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
|             eval_type result = detail::find_non_centrality(
 | |
|                static_cast<eval_type>(v),
 | |
|                static_cast<eval_type>(x),
 | |
|                static_cast<eval_type>(p),
 | |
|                static_cast<eval_type>(1-p),
 | |
|                forwarding_policy());
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result,
 | |
|                function);
 | |
|          }
 | |
|          template <class A, class B, class C>
 | |
|          static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
 | |
|          {
 | |
|             const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type eval_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy,
 | |
|                policies::promote_float<false>,
 | |
|                policies::promote_double<false>,
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
|             eval_type result = detail::find_non_centrality(
 | |
|                static_cast<eval_type>(c.dist),
 | |
|                static_cast<eval_type>(c.param1),
 | |
|                static_cast<eval_type>(1-c.param2),
 | |
|                static_cast<eval_type>(c.param2),
 | |
|                forwarding_policy());
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result,
 | |
|                function);
 | |
|          }
 | |
|       private:
 | |
|          // Data member, initialized by constructor.
 | |
|          RealType df; // degrees of freedom.
 | |
|          RealType ncp; // non-centrality parameter
 | |
|       }; // template <class RealType, class Policy> class non_central_chi_squared_distribution
 | |
| 
 | |
|       typedef non_central_chi_squared_distribution<double> non_central_chi_squared; // Reserved name of type double.
 | |
| 
 | |
|       // Non-member functions to give properties of the distribution.
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline const std::pair<RealType, RealType> range(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
 | |
|       { // Range of permissible values for random variable k.
 | |
|          using boost::math::tools::max_value;
 | |
|          return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline const std::pair<RealType, RealType> support(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
 | |
|       { // Range of supported values for random variable k.
 | |
|          // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
 | |
|          using boost::math::tools::max_value;
 | |
|          return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType mean(const non_central_chi_squared_distribution<RealType, Policy>& dist)
 | |
|       { // Mean of poisson distribution = lambda.
 | |
|          const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::mean()";
 | |
|          RealType k = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df(
 | |
|             function,
 | |
|             k, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_non_centrality(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return r;
 | |
|          return k + l;
 | |
|       } // mean
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType mode(const non_central_chi_squared_distribution<RealType, Policy>& dist)
 | |
|       { // mode.
 | |
|          static const char* function = "mode(non_central_chi_squared_distribution<%1%> const&)";
 | |
| 
 | |
|          RealType k = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df(
 | |
|             function,
 | |
|             k, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_non_centrality(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
|          return detail::generic_find_mode(dist, 1 + k, function);
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType variance(const non_central_chi_squared_distribution<RealType, Policy>& dist)
 | |
|       { // variance.
 | |
|          const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::variance()";
 | |
|          RealType k = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df(
 | |
|             function,
 | |
|             k, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_non_centrality(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return r;
 | |
|          return 2 * (2 * l + k);
 | |
|       }
 | |
| 
 | |
|       // RealType standard_deviation(const non_central_chi_squared_distribution<RealType, Policy>& dist)
 | |
|       // standard_deviation provided by derived accessors.
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType skewness(const non_central_chi_squared_distribution<RealType, Policy>& dist)
 | |
|       { // skewness = sqrt(l).
 | |
|          const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::skewness()";
 | |
|          RealType k = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df(
 | |
|             function,
 | |
|             k, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_non_centrality(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return r;
 | |
|          BOOST_MATH_STD_USING
 | |
|             return pow(2 / (k + 2 * l), RealType(3)/2) * (k + 3 * l);
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType kurtosis_excess(const non_central_chi_squared_distribution<RealType, Policy>& dist)
 | |
|       {
 | |
|          const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::kurtosis_excess()";
 | |
|          RealType k = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df(
 | |
|             function,
 | |
|             k, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_non_centrality(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return r;
 | |
|          return 12 * (k + 4 * l) / ((k + 2 * l) * (k + 2 * l));
 | |
|       } // kurtosis_excess
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType kurtosis(const non_central_chi_squared_distribution<RealType, Policy>& dist)
 | |
|       {
 | |
|          return kurtosis_excess(dist) + 3;
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
 | |
|       { // Probability Density/Mass Function.
 | |
|          return detail::nccs_pdf(dist, x);
 | |
|       } // pdf
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       RealType cdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
 | |
|       {
 | |
|          const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
 | |
|          RealType k = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df(
 | |
|             function,
 | |
|             k, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_non_centrality(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy())
 | |
|             ||
 | |
|          !detail::check_positive_x(
 | |
|             function,
 | |
|             x,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return r;
 | |
| 
 | |
|          return detail::non_central_chi_squared_cdf(x, k, l, false, Policy());
 | |
|       } // cdf
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       RealType cdf(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
 | |
|       { // Complemented Cumulative Distribution Function
 | |
|          const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
 | |
|          non_central_chi_squared_distribution<RealType, Policy> const& dist = c.dist;
 | |
|          RealType x = c.param;
 | |
|          RealType k = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df(
 | |
|             function,
 | |
|             k, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_non_centrality(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy())
 | |
|             ||
 | |
|          !detail::check_positive_x(
 | |
|             function,
 | |
|             x,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return r;
 | |
| 
 | |
|          return detail::non_central_chi_squared_cdf(x, k, l, true, Policy());
 | |
|       } // ccdf
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
 | |
|       { // Quantile (or Percent Point) function.
 | |
|          return detail::nccs_quantile(dist, p, false);
 | |
|       } // quantile
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType quantile(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
 | |
|       { // Quantile (or Percent Point) function.
 | |
|          return detail::nccs_quantile(c.dist, c.param, true);
 | |
|       } // quantile complement.
 | |
| 
 | |
|    } // namespace math
 | |
| } // namespace boost
 | |
| 
 | |
| // This include must be at the end, *after* the accessors
 | |
| // for this distribution have been defined, in order to
 | |
| // keep compilers that support two-phase lookup happy.
 | |
| #include <boost/math/distributions/detail/derived_accessors.hpp>
 | |
| 
 | |
| #endif // BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
 | |
| 
 | |
| 
 | |
| 
 | 
