js8call/.svn/pristine/b5/b520483f842b4059d1c4491389792ead7a964d57.svn-base
2018-02-08 21:28:33 -05:00

111 lines
4.0 KiB
Plaintext

//---------------------------------------------------------------------------//
// Copyright (c) 2016 Jakub Szuppe <j.szuppe@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_CPU_HPP
#define BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_CPU_HPP
#include <algorithm>
#include <boost/compute/buffer.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/detail/meta_kernel.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/detail/parameter_cache.hpp>
#include <boost/compute/iterator/buffer_iterator.hpp>
#include <boost/compute/type_traits/result_of.hpp>
#include <boost/compute/algorithm/detail/serial_reduce.hpp>
namespace boost {
namespace compute {
namespace detail {
template<class InputIterator, class OutputIterator, class BinaryFunction>
inline void reduce_on_cpu(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryFunction function,
command_queue &queue)
{
typedef typename
std::iterator_traits<InputIterator>::value_type T;
typedef typename
::boost::compute::result_of<BinaryFunction(T, T)>::type result_type;
const device &device = queue.get_device();
const uint_ compute_units = queue.get_device().compute_units();
boost::shared_ptr<parameter_cache> parameters =
detail::parameter_cache::get_global_cache(device);
std::string cache_key =
"__boost_reduce_cpu_" + boost::lexical_cast<std::string>(sizeof(T));
// for inputs smaller than serial_reduce_threshold
// serial_reduce algorithm is used
uint_ serial_reduce_threshold =
parameters->get(cache_key, "serial_reduce_threshold", 16384 * sizeof(T));
serial_reduce_threshold =
(std::max)(serial_reduce_threshold, uint_(compute_units));
const context &context = queue.get_context();
size_t count = detail::iterator_range_size(first, last);
if(count == 0){
return;
}
else if(count < serial_reduce_threshold) {
return serial_reduce(first, last, result, function, queue);
}
meta_kernel k("reduce_on_cpu");
buffer output(context, sizeof(result_type) * compute_units);
size_t count_arg = k.add_arg<uint_>("count");
size_t output_arg =
k.add_arg<result_type *>(memory_object::global_memory, "output");
k <<
"uint block = " <<
"(uint)ceil(((float)count)/get_global_size(0));\n" <<
"uint index = get_global_id(0) * block;\n" <<
"uint end = min(count, index + block);\n" <<
k.decl<result_type>("result") << " = " << first[k.var<uint_>("index")] << ";\n" <<
"index++;\n" <<
"while(index < end){\n" <<
"result = " << function(k.var<T>("result"),
first[k.var<uint_>("index")]) << ";\n" <<
"index++;\n" <<
"}\n" <<
"output[get_global_id(0)] = result;\n";
size_t global_work_size = compute_units;
kernel kernel = k.compile(context);
// reduction to global_work_size elements
kernel.set_arg(count_arg, static_cast<uint_>(count));
kernel.set_arg(output_arg, output);
queue.enqueue_1d_range_kernel(kernel, 0, global_work_size, 0);
// final reduction
reduce_on_cpu(
make_buffer_iterator<result_type>(output),
make_buffer_iterator<result_type>(output, global_work_size),
result,
function,
queue
);
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_CPU_HPP