519 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
#define RADS 0.0174532925199433
 | 
						|
#define DEGS 57.2957795130823
 | 
						|
#define TPI 6.28318530717959
 | 
						|
#define PI 3.1415927
 | 
						|
 | 
						|
/* ratio of     earth radius to astronomical unit */
 | 
						|
#define ER_OVER_AU 0.0000426352325194252
 | 
						|
 | 
						|
/* all prototypes here */
 | 
						|
 | 
						|
double getcoord(int coord);
 | 
						|
void getargs(int argc, char *argv[], int *y, int *m, double *tz, double *glong, double *glat);
 | 
						|
double range(double y);
 | 
						|
double rangerad(double y);
 | 
						|
double days(int y, int m, int dn, double hour);
 | 
						|
double days_(int *y, int *m, int *dn, double *hour);
 | 
						|
void moonpos(double, double *, double *, double *);
 | 
						|
void sunpos(double , double *, double *, double *);
 | 
						|
double moontransit(int y, int m, int d, double timezone, double glat, double glong, int *nt);
 | 
						|
double atan22(double y, double x);
 | 
						|
double epsilon(double d);
 | 
						|
void equatorial(double d, double *lon, double *lat, double *r);
 | 
						|
void ecliptic(double d, double *lon, double *lat, double *r);
 | 
						|
double gst(double d);
 | 
						|
void topo(double lst, double glat, double *alp, double *dec, double *r);
 | 
						|
double alt(double glat, double ha, double dec);
 | 
						|
void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p);
 | 
						|
void illumination(double day, double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill);
 | 
						|
int daysinmonth(int y, int m);
 | 
						|
int isleap(int y);
 | 
						|
void tmoonsub_(double *day, double *glat, double *glong, double *moonalt, 
 | 
						|
   double *mrv, double *l, double *b, double *paxis);
 | 
						|
 | 
						|
static const char
 | 
						|
usage[] = "  Usage: tmoon date[yyyymm] timz[+/-h.hh] long[+/-dddmm] lat[+/-ddmm]\n"
 | 
						|
            "example: tmoon 200009 0 -00155 5230\n";
 | 
						|
 | 
						|
/*
 | 
						|
  getargs() gets the arguments from the command line, does some basic error
 | 
						|
  checking, and converts arguments into numerical form. Arguments are passed
 | 
						|
  back in pointers. Error messages print to stderr so re-direction of output
 | 
						|
  to file won't leave users blind. Error checking prints list of all errors
 | 
						|
  in a command line before quitting.
 | 
						|
*/
 | 
						|
void getargs(int argc, char *argv[], int *y, int *m, double *tz,
 | 
						|
             double *glong, double *glat) {
 | 
						|
 | 
						|
  int date, latitude, longitude;
 | 
						|
  int mflag = 0, yflag = 0, longflag = 0, latflag = 0, tzflag = 0;
 | 
						|
  int longminflag = 0, latminflag = 0, dflag = 0;
 | 
						|
 | 
						|
  /* if not right number of arguments, then print example command line */
 | 
						|
 | 
						|
  if (argc !=5) {
 | 
						|
    fprintf(stderr, usage);
 | 
						|
    exit(EXIT_FAILURE);
 | 
						|
  }
 | 
						|
 | 
						|
  date = atoi(argv[1]);
 | 
						|
  *y = date / 100;
 | 
						|
  *m = date - *y * 100;
 | 
						|
  *tz = (double) atof(argv[2]);
 | 
						|
  longitude = atoi(argv[3]);
 | 
						|
  latitude = atoi(argv[4]);
 | 
						|
  *glong = RADS * getcoord(longitude);
 | 
						|
  *glat = RADS * getcoord(latitude);
 | 
						|
 | 
						|
  /* set a flag for each error found */
 | 
						|
 | 
						|
  if (*m > 12 || *m < 1) mflag = 1;
 | 
						|
  if (*y > 2500) yflag = 1;
 | 
						|
  if (date < 150001) dflag = 1;
 | 
						|
  if (fabs((float) *glong) > 180 * RADS) longflag = 1;
 | 
						|
  if (abs(longitude) % 100 > 59) longminflag = 1;
 | 
						|
  if (fabs((float) *glat) > 90 * RADS) latflag = 1;
 | 
						|
  if (abs(latitude) % 100 > 59) latminflag = 1;
 | 
						|
  if (fabs((float) *tz) > 12) tzflag = 1;
 | 
						|
 | 
						|
  /* print all the errors found */
 | 
						|
  
 | 
						|
  if (dflag == 1) {
 | 
						|
    fprintf(stderr, "date: dates must be in form yyyymm, gregorian, and later than 1500 AD\n");
 | 
						|
  }
 | 
						|
  if (yflag == 1) {
 | 
						|
    fprintf(stderr, "date: too far in future - accurate from 1500 to 2500\n");
 | 
						|
  }
 | 
						|
  if (mflag == 1) {
 | 
						|
    fprintf(stderr, "date: month must be in range 0 to 12, eg - August 2000 is entered as 200008\n");
 | 
						|
  }
 | 
						|
  if (tzflag == 1) {
 | 
						|
    fprintf(stderr, "timz: must be in range +/- 12 hours, eg -6 for Chicago\n");
 | 
						|
  }
 | 
						|
  if (longflag == 1) {
 | 
						|
    fprintf(stderr, "long: must be in range +/- 180 degrees\n");
 | 
						|
  }
 | 
						|
  if (longminflag == 1) {
 | 
						|
    fprintf(stderr, "long: last two digits are arcmin - max 59\n");
 | 
						|
  }
 | 
						|
  if (latflag == 1) {
 | 
						|
    fprintf(stderr, " lat: must be in range +/- 90 degrees\n");
 | 
						|
  }
 | 
						|
  if (latminflag == 1) {
 | 
						|
    fprintf(stderr, " lat: last two digits are arcmin - max 59\n");
 | 
						|
  }
 | 
						|
 | 
						|
  /* quits if one or more flags set */
 | 
						|
 | 
						|
  if (dflag + mflag + yflag + longflag + latflag + tzflag + longminflag + latminflag > 0) {
 | 
						|
    exit(EXIT_FAILURE);
 | 
						|
  }
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   returns coordinates in decimal degrees given the
 | 
						|
   coord as a ddmm value stored in an integer.
 | 
						|
*/
 | 
						|
double getcoord(int coord) {
 | 
						|
  int west = 1;
 | 
						|
  double glg, deg;
 | 
						|
  if (coord < 0) west = -1;
 | 
						|
  glg = fabs((double) coord/100);
 | 
						|
  deg = floor(glg);
 | 
						|
  glg = west* (deg + (glg - deg)*100 / 60);
 | 
						|
  return(glg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  days() takes the year, month, day in the month and decimal hours
 | 
						|
  in the day and returns the number of days since J2000.0.
 | 
						|
  Assumes Gregorian calendar.
 | 
						|
*/
 | 
						|
double days(int y, int m, int d, double h) {
 | 
						|
  int a, b;
 | 
						|
  double day;
 | 
						|
  
 | 
						|
  /*
 | 
						|
    The lines below work from 1900 march to feb 2100
 | 
						|
    a = 367 * y - 7 * (y + (m + 9) / 12) / 4 + 275 * m / 9 + d;
 | 
						|
    day = (double)a - 730531.5 + hour / 24;
 | 
						|
  */
 | 
						|
 | 
						|
  /*  These lines work for any Gregorian date since 0 AD */
 | 
						|
  if (m ==1 || m==2) {
 | 
						|
    m +=12;
 | 
						|
    y -= 1;
 | 
						|
  }
 | 
						|
  a = y / 100;
 | 
						|
  b = 2 - a + a/4;
 | 
						|
  day = floor(365.25*(y + 4716)) + floor(30.6001*(m + 1))
 | 
						|
    + d + b - 1524.5 - 2451545 + h/24;
 | 
						|
  return(day);
 | 
						|
}
 | 
						|
double days_(int *y0, int *m0, int *d0, double *h0) 
 | 
						|
{
 | 
						|
  return days(*y0,*m0,*d0,*h0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Returns 1 if y a leap year, and 0 otherwise, according
 | 
						|
to the Gregorian calendar
 | 
						|
*/
 | 
						|
int isleap(int y) {
 | 
						|
  int a = 0;
 | 
						|
  if(y % 4 == 0) a = 1;
 | 
						|
  if(y % 100 == 0) a = 0;
 | 
						|
  if(y % 400 == 0) a = 1;
 | 
						|
  return(a);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
Given the year and the month, function returns the
 | 
						|
number of days in the month. Valid for Gregorian
 | 
						|
calendar.
 | 
						|
*/
 | 
						|
int daysinmonth(int y, int m) {
 | 
						|
  int b = 31;
 | 
						|
  if(m == 2) {
 | 
						|
    if(isleap(y) == 1) b= 29;
 | 
						|
    else b = 28;
 | 
						|
  }
 | 
						|
  if(m == 4 || m == 6 || m == 9 || m == 11) b = 30;
 | 
						|
  return(b);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
moonpos() takes days from J2000.0 and returns ecliptic coordinates
 | 
						|
of moon in the pointers. Note call by reference.
 | 
						|
This function is within a couple of arcminutes most of the time,
 | 
						|
and is truncated from the Meeus Ch45 series, themselves truncations of
 | 
						|
ELP-2000. Returns moon distance in earth radii.
 | 
						|
Terms have been written out explicitly rather than using the
 | 
						|
table based method as only a small number of terms is
 | 
						|
retained.
 | 
						|
*/
 | 
						|
void moonpos(double d, double *lambda, double *beta, double *rvec) {
 | 
						|
  double dl, dB, dR, L, D, M, M1, F, e, lm, bm, rm, t;
 | 
						|
 | 
						|
  t = d / 36525;
 | 
						|
 | 
						|
  L = range(218.3164591  + 481267.88134236  * t) * RADS;
 | 
						|
  D = range(297.8502042  + 445267.1115168  * t) * RADS;
 | 
						|
  M = range(357.5291092  + 35999.0502909  * t) * RADS;
 | 
						|
  M1 = range(134.9634114  + 477198.8676313  * t - .008997 * t * t) * RADS;
 | 
						|
  F = range(93.27209929999999  + 483202.0175273  * t - .0034029*t*t)*RADS;
 | 
						|
  e = 1 - .002516 * t;
 | 
						|
 | 
						|
  dl =      6288774 * sin(M1);
 | 
						|
  dl +=     1274027 * sin(2 * D - M1);
 | 
						|
  dl +=      658314 * sin(2 * D);
 | 
						|
  dl +=      213618 * sin(2 * M1);
 | 
						|
  dl -=  e * 185116 * sin(M);
 | 
						|
  dl -=      114332 * sin(2 * F) ;
 | 
						|
  dl +=       58793 * sin(2 * D - 2 * M1);
 | 
						|
  dl +=   e * 57066 * sin(2 * D - M - M1) ;
 | 
						|
  dl +=       53322 * sin(2 * D + M1);
 | 
						|
  dl +=   e * 45758 * sin(2 * D - M);
 | 
						|
  dl -=   e * 40923 * sin(M - M1);
 | 
						|
  dl -=       34720 * sin(D) ;
 | 
						|
  dl -=   e * 30383 * sin(M + M1) ;
 | 
						|
  dl +=       15327 * sin(2 * D - 2 * F) ;
 | 
						|
  dl -=       12528 * sin(M1 + 2 * F);
 | 
						|
  dl +=       10980 * sin(M1 - 2 * F);
 | 
						|
  lm = rangerad(L + dl / 1000000 * RADS);
 | 
						|
 | 
						|
  dB =   5128122 * sin(F);
 | 
						|
  dB +=   280602 * sin(M1 + F);
 | 
						|
  dB +=   277693 * sin(M1 - F);
 | 
						|
  dB +=   173237 * sin(2 * D - F);
 | 
						|
  dB +=    55413 * sin(2 * D - M1 + F);
 | 
						|
  dB +=    46271 * sin(2 * D - M1 - F);
 | 
						|
  dB +=    32573 * sin(2 * D + F);
 | 
						|
  dB +=    17198 * sin(2 * M1 + F);
 | 
						|
  dB +=     9266 * sin(2 * D + M1 - F);
 | 
						|
  dB +=     8822 * sin(2 * M1 - F);
 | 
						|
  dB += e * 8216 * sin(2 * D - M - F);
 | 
						|
  dB +=     4324 * sin(2 * D - 2 * M1 - F);
 | 
						|
  bm = dB / 1000000 * RADS;
 | 
						|
 | 
						|
  dR =    -20905355 * cos(M1);
 | 
						|
  dR -=     3699111 * cos(2 * D - M1);
 | 
						|
  dR -=     2955968 * cos(2 * D);
 | 
						|
  dR -=      569925 * cos(2 * M1);
 | 
						|
  dR +=   e * 48888 * cos(M);
 | 
						|
  dR -=        3149 * cos(2 * F);
 | 
						|
  dR +=      246158 * cos(2 * D - 2 * M1);
 | 
						|
  dR -=  e * 152138 * cos(2 * D - M - M1) ;
 | 
						|
  dR -=      170733 * cos(2 * D + M1);
 | 
						|
  dR -=  e * 204586 * cos(2 * D - M);
 | 
						|
  dR -=  e * 129620 * cos(M - M1);
 | 
						|
  dR +=      108743 * cos(D);
 | 
						|
  dR +=  e * 104755 * cos(M + M1);
 | 
						|
  dR +=       79661 * cos(M1 - 2 * F);
 | 
						|
  rm = 385000.56  + dR / 1000;
 | 
						|
 | 
						|
  *lambda = lm;
 | 
						|
  *beta = bm;
 | 
						|
  /* distance to Moon must be in Earth radii */
 | 
						|
  *rvec = rm / 6378.14;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
topomoon() takes the local siderial time, the geographical
 | 
						|
latitude of the observer, and pointers to the geocentric
 | 
						|
equatorial coordinates. The function overwrites the geocentric
 | 
						|
coordinates with topocentric coordinates on a simple spherical
 | 
						|
earth model (no polar flattening). Expects Moon-Earth distance in
 | 
						|
Earth radii.    Formulas scavenged from Astronomical Almanac 'low
 | 
						|
precision formulae for Moon position' page D46.
 | 
						|
*/
 | 
						|
 | 
						|
void topo(double lst, double glat, double *alp, double *dec, double *r) {
 | 
						|
  double x, y, z, r1;
 | 
						|
  x = *r * cos(*dec) * cos(*alp) - cos(glat) * cos(lst);
 | 
						|
  y = *r * cos(*dec) * sin(*alp) - cos(glat) * sin(lst);
 | 
						|
  z = *r * sin(*dec)  - sin(glat);
 | 
						|
  r1 = sqrt(x*x + y*y + z*z);
 | 
						|
  *alp = atan22(y, x);
 | 
						|
  *dec = asin(z / r1);
 | 
						|
  *r = r1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
moontransit() takes date, the time zone and geographic longitude
 | 
						|
of observer and returns the time (decimal hours) of lunar transit
 | 
						|
on that day if there is one, and sets the notransit flag if there
 | 
						|
isn't. See Explanatory Supplement to Astronomical Almanac
 | 
						|
section 9.32 and 9.31 for the method.
 | 
						|
*/
 | 
						|
 | 
						|
double moontransit(int y, int m, int d, double tz, double glat, double glong, int *notransit) {
 | 
						|
  double hm, ht, ht1, lon, lat, rv, dnew, lst;
 | 
						|
  int itcount;
 | 
						|
 | 
						|
  ht1 = 180 * RADS;
 | 
						|
  ht = 0;
 | 
						|
  itcount = 0;
 | 
						|
  *notransit = 0;
 | 
						|
  do {
 | 
						|
    ht = ht1;
 | 
						|
    itcount++;
 | 
						|
    dnew = days(y, m, d, ht * DEGS/15) - tz/24;
 | 
						|
    lst = gst(dnew) + glong;
 | 
						|
    /* find the topocentric Moon ra (hence hour angle) and dec */
 | 
						|
    moonpos(dnew, &lon, &lat, &rv);
 | 
						|
    equatorial(dnew, &lon, &lat, &rv);
 | 
						|
    topo(lst, glat, &lon, &lat, &rv);
 | 
						|
    hm = rangerad(lst -  lon);
 | 
						|
    ht1 = rangerad(ht - hm);
 | 
						|
    /* if no convergence, then no transit on that day */
 | 
						|
    if (itcount > 30) {
 | 
						|
      *notransit = 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  while (fabs(ht - ht1) > 0.04 * RADS);
 | 
						|
  return(ht1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Calculates the selenographic coordinates of either the sub Earth point
 | 
						|
  (optical libration) or the sub-solar point (selen. coords of centre of
 | 
						|
  bright hemisphere).  Based on Meeus chapter 51 but neglects physical
 | 
						|
  libration and nutation, with some simplification of the formulas.
 | 
						|
*/
 | 
						|
void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p) {
 | 
						|
  double i, f, omega, w, y, x, a, t, eps;
 | 
						|
  t = day / 36525;
 | 
						|
  i = 1.54242 * RADS;
 | 
						|
  eps = epsilon(day);
 | 
						|
  f = range(93.2720993 + 483202.0175273 * t - .0034029 * t * t) * RADS;
 | 
						|
  omega = range(125.044555 - 1934.1361849 * t + .0020762 * t * t) * RADS;
 | 
						|
  w = lambda - omega;
 | 
						|
  y = sin(w) * cos(beta) * cos(i) - sin(beta) * sin(i);
 | 
						|
  x = cos(w) * cos(beta);
 | 
						|
  a = atan22(y, x);
 | 
						|
  *l = a - f;
 | 
						|
 | 
						|
  /*  kludge to catch cases of 'round the back' angles  */
 | 
						|
  if (*l < -90 * RADS) *l += TPI;
 | 
						|
  if (*l > 90 * RADS)  *l -= TPI;
 | 
						|
  *b = asin(-sin(w) * cos(beta) * sin(i) - sin(beta) * cos(i));
 | 
						|
 | 
						|
  /*  pa pole axis - not used for Sun stuff */
 | 
						|
  x = sin(i) * sin(omega);
 | 
						|
  y = sin(i) * cos(omega) * cos(eps) - cos(i) * sin(eps);
 | 
						|
  w = atan22(x, y);
 | 
						|
  *p = rangerad(asin(sqrt(x*x + y*y) * cos(alpha - w) / cos(*b)));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  Takes: days since J2000.0, eq coords Moon, ratio of moon to sun distance,
 | 
						|
  eq coords Sun
 | 
						|
  Returns: position angle of bright limb wrt NCP, percentage illumination
 | 
						|
  of Sun
 | 
						|
*/
 | 
						|
void illumination(double day , double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill) {
 | 
						|
  double x, y, phi, i;
 | 
						|
  (void)day;
 | 
						|
  y = cos(sdec) * sin(sra - lra);
 | 
						|
  x = sin(sdec) * cos(ldec) - cos(sdec) * sin(ldec) * cos (sra - lra);
 | 
						|
  *pabl = atan22(y, x);
 | 
						|
  phi = acos(sin(sdec) * sin(ldec) + cos(sdec) * cos(ldec) * cos(sra-lra));
 | 
						|
  i = atan22(sin(phi) , (dr - cos(phi)));
 | 
						|
  *ill = 0.5*(1 + cos(i));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
sunpos() takes days from J2000.0 and returns ecliptic longitude
 | 
						|
of Sun in the pointers. Latitude is zero at this level of precision,
 | 
						|
but pointer left in for consistency in number of arguments.
 | 
						|
This function is within 0.01 degree (1 arcmin) almost all the time
 | 
						|
for a century either side of J2000.0. This is from the 'low precision
 | 
						|
fomulas for the Sun' from C24 of Astronomical Alamanac
 | 
						|
*/
 | 
						|
void sunpos(double d, double *lambda, double *beta, double *rvec) {
 | 
						|
  double L, g, ls, bs, rs;
 | 
						|
 | 
						|
  L = range(280.461 + .9856474 * d) * RADS;
 | 
						|
  g = range(357.528 + .9856003 * d) * RADS;
 | 
						|
  ls = L + (1.915 * sin(g) + .02 * sin(2 * g)) * RADS;
 | 
						|
  bs = 0;
 | 
						|
  rs = 1.00014 - .01671 * cos(g) - .00014 * cos(2 * g);
 | 
						|
  *lambda = ls;
 | 
						|
  *beta = bs;
 | 
						|
  *rvec = rs;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
this routine returns the altitude given the days since J2000.0
 | 
						|
the hour angle and declination of the object and the latitude
 | 
						|
of the observer. Used to find the Sun's altitude to put a letter
 | 
						|
code on the transit time, and to find the Moon's altitude at
 | 
						|
transit just to make sure that the Moon is visible.
 | 
						|
*/
 | 
						|
double alt(double glat, double ha, double dec) {
 | 
						|
  return(asin(sin(dec) * sin(glat) + cos(dec) * cos(glat) * cos(ha)));
 | 
						|
}
 | 
						|
 | 
						|
/* returns an angle in degrees in the range 0 to 360 */
 | 
						|
double range(double x) {
 | 
						|
  double a, b;
 | 
						|
  b = x / 360;
 | 
						|
  a = 360 * (b - floor(b));
 | 
						|
  if (a < 0)
 | 
						|
    a = 360 + a;
 | 
						|
  return(a);
 | 
						|
}
 | 
						|
 | 
						|
/* returns an angle in rads in the range 0 to two pi */
 | 
						|
double rangerad(double x) {
 | 
						|
  double a, b;
 | 
						|
  b = x / TPI;
 | 
						|
  a = TPI * (b - floor(b));
 | 
						|
  if (a < 0)
 | 
						|
    a = TPI + a;
 | 
						|
  return(a);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
gets the atan2 function returning angles in the right
 | 
						|
order and  range
 | 
						|
*/
 | 
						|
double atan22(double y, double x) {
 | 
						|
  double a;
 | 
						|
 | 
						|
  a = atan2(y, x);
 | 
						|
  if (a < 0) a += TPI;
 | 
						|
  return(a);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
returns mean obliquity of ecliptic in radians given days since
 | 
						|
J2000.0.
 | 
						|
*/
 | 
						|
double epsilon(double d) {
 | 
						|
  double t = d/ 36525;
 | 
						|
  return((23.4392911111111 - (t* (46.8150 + 0.00059*t)/3600)) *RADS);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
replaces ecliptic coordinates with equatorial coordinates
 | 
						|
note: call by reference destroys original values
 | 
						|
R is unchanged.
 | 
						|
*/
 | 
						|
void equatorial(double d, double *lon, double *lat, double * r) {
 | 
						|
  double  eps, ceps, seps, l, b;
 | 
						|
  (void)r;
 | 
						|
 | 
						|
  l = *lon;
 | 
						|
  b = * lat;
 | 
						|
  eps = epsilon(d);
 | 
						|
  ceps = cos(eps);
 | 
						|
  seps = sin(eps);
 | 
						|
  *lon = atan22(sin(l)*ceps - tan(b)*seps, cos(l));
 | 
						|
  *lat = asin(sin(b)*ceps + cos(b)*seps*sin(l));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
replaces equatorial coordinates with ecliptic ones. Inverse
 | 
						|
of above, but used to find topocentric ecliptic coords.
 | 
						|
*/
 | 
						|
void ecliptic(double d, double *lon, double *lat, double * r) {
 | 
						|
  double  eps, ceps, seps, alp, dec;
 | 
						|
  (void)r;
 | 
						|
 | 
						|
  alp = *lon;
 | 
						|
  dec = *lat;
 | 
						|
  eps = epsilon(d);
 | 
						|
  ceps = cos(eps);
 | 
						|
  seps = sin(eps);
 | 
						|
  *lon = atan22(sin(alp)*ceps + tan(dec)*seps, cos(alp));
 | 
						|
  *lat = asin(sin(dec)*ceps - cos(dec)*seps*sin(alp));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
returns the siderial time at greenwich meridian as
 | 
						|
an angle in radians given the days since J2000.0
 | 
						|
*/
 | 
						|
double gst( double d) {
 | 
						|
  double t = d / 36525;
 | 
						|
  double theta;
 | 
						|
  theta = range(280.46061837 + 360.98564736629 * d + 0.000387933 * t * t);
 | 
						|
  return(theta * RADS);
 | 
						|
}
 | 
						|
 | 
						|
void tmoonsub_(double *day, double *glat, double *glong, double *moonalt, 
 | 
						|
   double *mrv, double *l, double *b, double *paxis)
 | 
						|
{
 | 
						|
  double mlambda, mbeta;
 | 
						|
  double malpha, mdelta;
 | 
						|
  double lst, mhr;
 | 
						|
  double tlambda, tbeta, trv;
 | 
						|
 | 
						|
  lst = gst(*day) + *glong;
 | 
						|
      
 | 
						|
  /* find Moon topocentric coordinates for libration calculations */
 | 
						|
 | 
						|
  moonpos(*day, &mlambda, &mbeta, mrv);
 | 
						|
  malpha = mlambda;
 | 
						|
  mdelta = mbeta;
 | 
						|
  equatorial(*day, &malpha, &mdelta, mrv);
 | 
						|
  topo(lst, *glat, &malpha, &mdelta, mrv);
 | 
						|
  mhr = rangerad(lst - malpha);
 | 
						|
  *moonalt = alt(*glat, mhr, mdelta);
 | 
						|
      
 | 
						|
  /* Optical libration and Position angle of the Pole */
 | 
						|
 | 
						|
  tlambda = malpha;
 | 
						|
  tbeta = mdelta;
 | 
						|
  trv = *mrv;
 | 
						|
  ecliptic(*day, &tlambda, &tbeta, &trv);
 | 
						|
  libration(*day, tlambda, tbeta, malpha,  l, b, paxis);
 | 
						|
}
 |