206 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
// Copyright Jim Bosch 2010-2012.
 | 
						|
// Copyright Stefan Seefeld 2016.
 | 
						|
// Distributed under the Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt or copy at
 | 
						|
// http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#ifndef boost_python_numpy_ufunc_hpp_
 | 
						|
#define boost_python_numpy_ufunc_hpp_
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Utilities to create ufunc-like broadcasting functions out of C++ functors.
 | 
						|
 */
 | 
						|
 | 
						|
#include <boost/python.hpp>
 | 
						|
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
 | 
						|
#include <boost/python/numpy/dtype.hpp>
 | 
						|
#include <boost/python/numpy/ndarray.hpp>
 | 
						|
 | 
						|
namespace boost { namespace python { namespace numpy {
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief A boost.python "object manager" (subclass of object) for PyArray_MultiIter.
 | 
						|
 *
 | 
						|
 *  multi_iter is a Python object, but a very low-level one.  It should generally only be used
 | 
						|
 *  in loops of the form:
 | 
						|
 *  @code
 | 
						|
 *  while (iter.not_done()) {
 | 
						|
 *      ...
 | 
						|
 *      iter.next();
 | 
						|
 *  }
 | 
						|
 *  @endcode
 | 
						|
 *
 | 
						|
 *  @todo I can't tell if this type is exposed in Python anywhere; if it is, we should use that name.
 | 
						|
 *        It's more dangerous than most object managers, however - maybe it actually belongs in
 | 
						|
 *        a detail namespace?
 | 
						|
 */
 | 
						|
class multi_iter : public object
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
  BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(multi_iter, object);
 | 
						|
 | 
						|
  /// @brief Increment the iterator.
 | 
						|
  void next();
 | 
						|
 | 
						|
  /// @brief Check if the iterator is at its end.
 | 
						|
  bool not_done() const;
 | 
						|
 | 
						|
  /// @brief Return a pointer to the element of the nth broadcasted array.
 | 
						|
  char * get_data(int n) const;
 | 
						|
 | 
						|
  /// @brief Return the number of dimensions of the broadcasted array expression.
 | 
						|
  int get_nd() const;
 | 
						|
    
 | 
						|
  /// @brief Return the shape of the broadcasted array expression as an array of integers.
 | 
						|
  Py_intptr_t const * get_shape() const;
 | 
						|
 | 
						|
  /// @brief Return the shape of the broadcasted array expression in the nth dimension.
 | 
						|
  Py_intptr_t shape(int n) const;
 | 
						|
    
 | 
						|
};
 | 
						|
 | 
						|
/// @brief Construct a multi_iter over a single sequence or scalar object.
 | 
						|
multi_iter make_multi_iter(object const & a1);
 | 
						|
 | 
						|
/// @brief Construct a multi_iter by broadcasting two objects.
 | 
						|
multi_iter make_multi_iter(object const & a1, object const & a2);
 | 
						|
 | 
						|
/// @brief Construct a multi_iter by broadcasting three objects.
 | 
						|
multi_iter make_multi_iter(object const & a1, object const & a2, object const & a3);
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Helps wrap a C++ functor taking a single scalar argument as a broadcasting ufunc-like
 | 
						|
 *         Python object.
 | 
						|
 *
 | 
						|
 *  Typical usage looks like this:
 | 
						|
 *  @code
 | 
						|
 *  struct TimesPI 
 | 
						|
 *  {
 | 
						|
 *    typedef double argument_type;
 | 
						|
 *    typedef double result_type;
 | 
						|
 *    double operator()(double input) const { return input * M_PI; }
 | 
						|
 *  };
 | 
						|
 *  
 | 
						|
 *  BOOST_PYTHON_MODULE(example)
 | 
						|
 *  {
 | 
						|
 *    class_< TimesPI >("TimesPI")
 | 
						|
 *      .def("__call__", unary_ufunc<TimesPI>::make());
 | 
						|
 *  }
 | 
						|
 *  @endcode
 | 
						|
 *  
 | 
						|
 */
 | 
						|
template <typename TUnaryFunctor, 
 | 
						|
          typename TArgument=typename TUnaryFunctor::argument_type,
 | 
						|
          typename TResult=typename TUnaryFunctor::result_type>
 | 
						|
struct unary_ufunc 
 | 
						|
{
 | 
						|
 | 
						|
  /**
 | 
						|
   *  @brief A C++ function with object arguments that broadcasts its arguments before
 | 
						|
   *         passing them to the underlying C++ functor.
 | 
						|
   */
 | 
						|
  static object call(TUnaryFunctor & self, object const & input, object const & output)
 | 
						|
  {
 | 
						|
    dtype in_dtype = dtype::get_builtin<TArgument>();
 | 
						|
    dtype out_dtype = dtype::get_builtin<TResult>();
 | 
						|
    ndarray in_array = from_object(input, in_dtype, ndarray::ALIGNED);
 | 
						|
    ndarray out_array = (output != object()) ?
 | 
						|
      from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
 | 
						|
      : zeros(in_array.get_nd(), in_array.get_shape(), out_dtype);
 | 
						|
    multi_iter iter = make_multi_iter(in_array, out_array);
 | 
						|
    while (iter.not_done()) 
 | 
						|
    {
 | 
						|
      TArgument * argument = reinterpret_cast<TArgument*>(iter.get_data(0));
 | 
						|
      TResult * result = reinterpret_cast<TResult*>(iter.get_data(1));
 | 
						|
      *result = self(*argument);
 | 
						|
      iter.next();
 | 
						|
    } 
 | 
						|
    return out_array.scalarize();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   *  @brief Construct a boost.python function object from call() with reasonable keyword names.
 | 
						|
   *
 | 
						|
   *  Users will often want to specify their own keyword names with the same signature, but this
 | 
						|
   *  is a convenient shortcut.
 | 
						|
   */
 | 
						|
  static object make()
 | 
						|
  {
 | 
						|
    return make_function(call, default_call_policies(), (arg("input"), arg("output")=object()));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Helps wrap a C++ functor taking a pair of scalar arguments as a broadcasting ufunc-like
 | 
						|
 *         Python object.
 | 
						|
 *
 | 
						|
 *  Typical usage looks like this:
 | 
						|
 *  @code
 | 
						|
 *  struct CosSum 
 | 
						|
 *  {
 | 
						|
 *    typedef double first_argument_type;
 | 
						|
 *    typedef double second_argument_type;
 | 
						|
 *    typedef double result_type;
 | 
						|
 *    double operator()(double input1, double input2) const { return std::cos(input1 + input2); }
 | 
						|
 *  };
 | 
						|
 *  
 | 
						|
 *  BOOST_PYTHON_MODULE(example) 
 | 
						|
 *  {
 | 
						|
 *    class_< CosSum >("CosSum")
 | 
						|
 *      .def("__call__", binary_ufunc<CosSum>::make());
 | 
						|
 *  }
 | 
						|
 *  @endcode
 | 
						|
 *  
 | 
						|
 */
 | 
						|
template <typename TBinaryFunctor, 
 | 
						|
          typename TArgument1=typename TBinaryFunctor::first_argument_type,
 | 
						|
          typename TArgument2=typename TBinaryFunctor::second_argument_type,
 | 
						|
          typename TResult=typename TBinaryFunctor::result_type>
 | 
						|
struct binary_ufunc 
 | 
						|
{
 | 
						|
 | 
						|
  static object
 | 
						|
  call(TBinaryFunctor & self, object const & input1, object const & input2,
 | 
						|
       object const & output)
 | 
						|
  {
 | 
						|
    dtype in1_dtype = dtype::get_builtin<TArgument1>();
 | 
						|
    dtype in2_dtype = dtype::get_builtin<TArgument2>();
 | 
						|
    dtype out_dtype = dtype::get_builtin<TResult>();
 | 
						|
    ndarray in1_array = from_object(input1, in1_dtype, ndarray::ALIGNED);
 | 
						|
    ndarray in2_array = from_object(input2, in2_dtype, ndarray::ALIGNED);
 | 
						|
    multi_iter iter = make_multi_iter(in1_array, in2_array);
 | 
						|
    ndarray out_array = (output != object())
 | 
						|
      ? from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
 | 
						|
      : zeros(iter.get_nd(), iter.get_shape(), out_dtype);
 | 
						|
    iter = make_multi_iter(in1_array, in2_array, out_array);
 | 
						|
    while (iter.not_done()) 
 | 
						|
    {
 | 
						|
      TArgument1 * argument1 = reinterpret_cast<TArgument1*>(iter.get_data(0));
 | 
						|
      TArgument2 * argument2 = reinterpret_cast<TArgument2*>(iter.get_data(1));
 | 
						|
      TResult * result = reinterpret_cast<TResult*>(iter.get_data(2));
 | 
						|
      *result = self(*argument1, *argument2);
 | 
						|
      iter.next();
 | 
						|
    } 
 | 
						|
    return out_array.scalarize();
 | 
						|
  }
 | 
						|
 | 
						|
  static object make()
 | 
						|
  {
 | 
						|
    return make_function(call, default_call_policies(),
 | 
						|
			    (arg("input1"), arg("input2"), arg("output")=object()));
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
} // namespace boost::python::numpy
 | 
						|
 | 
						|
namespace converter 
 | 
						|
{
 | 
						|
 | 
						|
NUMPY_OBJECT_MANAGER_TRAITS(numpy::multi_iter);
 | 
						|
 | 
						|
}}} // namespace boost::python::converter
 | 
						|
 | 
						|
#endif
 |