297 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
// Copyright Jim Bosch 2010-2012.
 | 
						|
// Copyright Stefan Seefeld 2016.
 | 
						|
// Distributed under the Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt or copy at
 | 
						|
// http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#ifndef boost_python_numpy_ndarray_hpp_
 | 
						|
#define boost_python_numpy_ndarray_hpp_
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Object manager and various utilities for numpy.ndarray.
 | 
						|
 */
 | 
						|
 | 
						|
#include <boost/python.hpp>
 | 
						|
#include <boost/utility/enable_if.hpp>
 | 
						|
#include <boost/type_traits/is_integral.hpp>
 | 
						|
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
 | 
						|
#include <boost/python/numpy/dtype.hpp>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace boost { namespace python { namespace numpy {
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief A boost.python "object manager" (subclass of object) for numpy.ndarray.
 | 
						|
 *
 | 
						|
 *  @todo This could have a lot more functionality (like boost::python::numeric::array).
 | 
						|
 *        Right now all that exists is what was needed to move raw data between C++ and Python.
 | 
						|
 */
 | 
						|
class ndarray : public object
 | 
						|
{
 | 
						|
 | 
						|
  /**
 | 
						|
   *  @brief An internal struct that's byte-compatible with PyArrayObject.
 | 
						|
   *
 | 
						|
   *  This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
 | 
						|
   *  from the user.
 | 
						|
   */
 | 
						|
  struct array_struct 
 | 
						|
  {
 | 
						|
    PyObject_HEAD
 | 
						|
    char * data;
 | 
						|
    int nd;
 | 
						|
    Py_intptr_t * shape;
 | 
						|
    Py_intptr_t * strides;
 | 
						|
    PyObject * base;
 | 
						|
    PyObject * descr;
 | 
						|
    int flags;
 | 
						|
    PyObject * weakreflist;
 | 
						|
  };
 | 
						|
  
 | 
						|
  /// @brief Return the held Python object as an array_struct.
 | 
						|
  array_struct * get_struct() const { return reinterpret_cast<array_struct*>(this->ptr()); }
 | 
						|
 | 
						|
public:
 | 
						|
  
 | 
						|
  /**
 | 
						|
   *  @brief Enum to represent (some) of Numpy's internal flags.
 | 
						|
   *
 | 
						|
   *  These don't match the actual Numpy flag values; we can't get those without including 
 | 
						|
   *  numpy/arrayobject.h or copying them directly.  That's very unfortunate.
 | 
						|
   *
 | 
						|
   *  @todo I'm torn about whether this should be an enum.  It's very convenient to not
 | 
						|
   *        make these simple integer values for overloading purposes, but the need to
 | 
						|
   *        define every possible combination and custom bitwise operators is ugly.
 | 
						|
   */
 | 
						|
  enum bitflag 
 | 
						|
  {
 | 
						|
    NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2, 
 | 
						|
    ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
 | 
						|
    CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
 | 
						|
    FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
 | 
						|
    UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
 | 
						|
  };
 | 
						|
 | 
						|
  BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);
 | 
						|
 | 
						|
  /// @brief Return a view of the scalar with the given dtype.
 | 
						|
  ndarray view(dtype const & dt) const;
 | 
						|
    
 | 
						|
  /// @brief Copy the array, cast to a specified type.
 | 
						|
  ndarray astype(dtype const & dt) const;
 | 
						|
 | 
						|
  /// @brief Copy the scalar (deep for all non-object fields).
 | 
						|
  ndarray copy() const;
 | 
						|
 | 
						|
  /// @brief Return the size of the nth dimension.
 | 
						|
  Py_intptr_t shape(int n) const { return get_shape()[n]; }
 | 
						|
 | 
						|
  /// @brief Return the stride of the nth dimension.
 | 
						|
  Py_intptr_t strides(int n) const { return get_strides()[n]; }
 | 
						|
    
 | 
						|
  /**
 | 
						|
   *  @brief Return the array's raw data pointer.
 | 
						|
   *
 | 
						|
   *  This returns char so stride math works properly on it.  It's pretty much
 | 
						|
   *  expected that the user will have to reinterpret_cast it.
 | 
						|
   */
 | 
						|
  char * get_data() const { return get_struct()->data; }
 | 
						|
 | 
						|
  /// @brief Return the array's data-type descriptor object.
 | 
						|
  dtype get_dtype() const;
 | 
						|
  
 | 
						|
  /// @brief Return the object that owns the array's data, or None if the array owns its own data.
 | 
						|
  object get_base() const;
 | 
						|
  
 | 
						|
  /// @brief Set the object that owns the array's data.  Use with care.
 | 
						|
  void set_base(object const & base);
 | 
						|
  
 | 
						|
  /// @brief Return the shape of the array as an array of integers (length == get_nd()).
 | 
						|
  Py_intptr_t const * get_shape() const { return get_struct()->shape; }
 | 
						|
  
 | 
						|
  /// @brief Return the stride of the array as an array of integers (length == get_nd()).
 | 
						|
  Py_intptr_t const * get_strides() const { return get_struct()->strides; }
 | 
						|
  
 | 
						|
  /// @brief Return the number of array dimensions.
 | 
						|
  int get_nd() const { return get_struct()->nd; }
 | 
						|
  
 | 
						|
  /// @brief Return the array flags.
 | 
						|
  bitflag get_flags() const;
 | 
						|
  
 | 
						|
  /// @brief Reverse the dimensions of the array.
 | 
						|
  ndarray transpose() const;
 | 
						|
  
 | 
						|
  /// @brief Eliminate any unit-sized dimensions.
 | 
						|
  ndarray squeeze() const;
 | 
						|
  
 | 
						|
  /// @brief Equivalent to self.reshape(*shape) in Python.
 | 
						|
  ndarray reshape(python::tuple const & shape) const;
 | 
						|
  
 | 
						|
  /**
 | 
						|
   *  @brief If the array contains only a single element, return it as an array scalar; otherwise return
 | 
						|
   *         the array.
 | 
						|
   *
 | 
						|
   *  @internal This is simply a call to PyArray_Return();
 | 
						|
   */
 | 
						|
  object scalarize() const;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Construct a new array with the given shape and data type, with data initialized to zero.
 | 
						|
 */
 | 
						|
ndarray zeros(python::tuple const & shape, dtype const & dt);
 | 
						|
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Construct a new array with the given shape and data type, with data left uninitialized.
 | 
						|
 */
 | 
						|
ndarray empty(python::tuple const & shape, dtype const & dt);
 | 
						|
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Construct a new array from an arbitrary Python sequence.
 | 
						|
 *
 | 
						|
 *  @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python.
 | 
						|
 */
 | 
						|
ndarray array(object const & obj);
 | 
						|
ndarray array(object const & obj, dtype const & dt);
 | 
						|
 | 
						|
namespace detail 
 | 
						|
{
 | 
						|
 | 
						|
ndarray from_data_impl(void * data,
 | 
						|
		       dtype const & dt,
 | 
						|
		       std::vector<Py_intptr_t> const & shape,
 | 
						|
		       std::vector<Py_intptr_t> const & strides,
 | 
						|
		       object const & owner,
 | 
						|
		       bool writeable);
 | 
						|
 | 
						|
template <typename Container>
 | 
						|
ndarray from_data_impl(void * data,
 | 
						|
		       dtype const & dt,
 | 
						|
		       Container shape,
 | 
						|
		       Container strides,
 | 
						|
		       object const & owner,
 | 
						|
		       bool writeable,
 | 
						|
		       typename boost::enable_if< boost::is_integral<typename Container::value_type> >::type * enabled = NULL)
 | 
						|
{
 | 
						|
  std::vector<Py_intptr_t> shape_(shape.begin(),shape.end());
 | 
						|
  std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
 | 
						|
  return from_data_impl(data, dt, shape_, strides_, owner, writeable);    
 | 
						|
}
 | 
						|
 | 
						|
ndarray from_data_impl(void * data,
 | 
						|
		       dtype const & dt,
 | 
						|
		       object const & shape,
 | 
						|
		       object const & strides,
 | 
						|
		       object const & owner,
 | 
						|
		       bool writeable);
 | 
						|
 | 
						|
} // namespace boost::python::numpy::detail
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Construct a new ndarray object from a raw pointer.
 | 
						|
 *
 | 
						|
 *  @param[in] data    Raw pointer to the first element of the array.
 | 
						|
 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
 | 
						|
 *  @param[in] shape   Shape of the array as STL container of integers; must have begin() and end().
 | 
						|
 *  @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
 | 
						|
 *  @param[in] owner   An arbitray Python object that owns that data pointer.  The array object will
 | 
						|
 *                     keep a reference to the object, and decrement it's reference count when the
 | 
						|
 *                     array goes out of scope.  Pass None at your own peril.
 | 
						|
 *
 | 
						|
 *  @todo Should probably take ranges of iterators rather than actual container objects.
 | 
						|
 */
 | 
						|
template <typename Container>
 | 
						|
inline ndarray from_data(void * data,
 | 
						|
			 dtype const & dt,
 | 
						|
			 Container shape,
 | 
						|
			 Container strides,
 | 
						|
			 python::object const & owner)
 | 
						|
{
 | 
						|
  return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
 | 
						|
}    
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Construct a new ndarray object from a raw pointer.
 | 
						|
 *
 | 
						|
 *  @param[in] data    Raw pointer to the first element of the array.
 | 
						|
 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
 | 
						|
 *  @param[in] shape   Shape of the array as STL container of integers; must have begin() and end().
 | 
						|
 *  @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
 | 
						|
 *  @param[in] owner   An arbitray Python object that owns that data pointer.  The array object will
 | 
						|
 *                     keep a reference to the object, and decrement it's reference count when the
 | 
						|
 *                     array goes out of scope.  Pass None at your own peril.
 | 
						|
 *
 | 
						|
 *  This overload takes a const void pointer and sets the "writeable" flag of the array to false.
 | 
						|
 *
 | 
						|
 *  @todo Should probably take ranges of iterators rather than actual container objects.
 | 
						|
 */
 | 
						|
template <typename Container>
 | 
						|
inline ndarray from_data(void const * data,
 | 
						|
			 dtype const & dt,
 | 
						|
			 Container shape,
 | 
						|
			 Container strides,
 | 
						|
			 python::object const & owner)
 | 
						|
{
 | 
						|
  return numpy::detail::from_data_impl(const_cast<void*>(data), dt, shape, strides, owner, false);
 | 
						|
}    
 | 
						|
 | 
						|
/**
 | 
						|
 *  @brief Transform an arbitrary object into a numpy array with the given requirements.
 | 
						|
 *
 | 
						|
 *  @param[in] obj     An arbitrary python object to convert.  Arrays that meet the requirements
 | 
						|
 *                     will be passed through directly.
 | 
						|
 *  @param[in] dt      Data type descriptor.  Often retrieved with dtype::get_builtin().
 | 
						|
 *  @param[in] nd_min  Minimum number of dimensions.
 | 
						|
 *  @param[in] nd_max  Maximum number of dimensions.
 | 
						|
 *  @param[in] flags   Bitwise OR of flags specifying additional requirements.
 | 
						|
 */
 | 
						|
ndarray from_object(object const & obj, dtype const & dt,
 | 
						|
                    int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
 | 
						|
 | 
						|
inline ndarray from_object(object const & obj, dtype const & dt,
 | 
						|
                           int nd, ndarray::bitflag flags=ndarray::NONE)
 | 
						|
{
 | 
						|
  return from_object(obj, dt, nd, nd, flags);
 | 
						|
}
 | 
						|
 | 
						|
inline ndarray from_object(object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE)
 | 
						|
{
 | 
						|
  return from_object(obj, dt, 0, 0, flags);
 | 
						|
}
 | 
						|
 | 
						|
ndarray from_object(object const & obj, int nd_min, int nd_max,
 | 
						|
                    ndarray::bitflag flags=ndarray::NONE);
 | 
						|
 | 
						|
inline ndarray from_object(object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE)
 | 
						|
{
 | 
						|
  return from_object(obj, nd, nd, flags);
 | 
						|
}
 | 
						|
 | 
						|
inline ndarray from_object(object const & obj, ndarray::bitflag flags=ndarray::NONE)
 | 
						|
{
 | 
						|
  return from_object(obj, 0, 0, flags);
 | 
						|
}
 | 
						|
 | 
						|
inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b)
 | 
						|
{
 | 
						|
  return ndarray::bitflag(int(a) | int(b));
 | 
						|
}
 | 
						|
 | 
						|
inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b)
 | 
						|
{
 | 
						|
  return ndarray::bitflag(int(a) & int(b));
 | 
						|
}
 | 
						|
 | 
						|
} // namespace boost::python::numpy
 | 
						|
 | 
						|
namespace converter 
 | 
						|
{
 | 
						|
 | 
						|
NUMPY_OBJECT_MANAGER_TRAITS(numpy::ndarray);
 | 
						|
 | 
						|
}}} // namespace boost::python::converter
 | 
						|
 | 
						|
#endif
 |