444 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			444 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//---------------------------------------------------------------------------//
 | 
						|
// Copyright (c) 2015 Jakub Szuppe <j.szuppe@gmail.com>
 | 
						|
//
 | 
						|
// Distributed under the Boost Software License, Version 1.0
 | 
						|
// See accompanying file LICENSE_1_0.txt or copy at
 | 
						|
// http://www.boost.org/LICENSE_1_0.txt
 | 
						|
//
 | 
						|
// See http://boostorg.github.com/compute for more information.
 | 
						|
//---------------------------------------------------------------------------//
 | 
						|
 | 
						|
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP
 | 
						|
#define BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#include <boost/compute/types.hpp>
 | 
						|
#include <boost/compute/command_queue.hpp>
 | 
						|
#include <boost/compute/algorithm/copy.hpp>
 | 
						|
#include <boost/compute/allocator/pinned_allocator.hpp>
 | 
						|
#include <boost/compute/container/vector.hpp>
 | 
						|
#include <boost/compute/detail/meta_kernel.hpp>
 | 
						|
#include <boost/compute/detail/iterator_range_size.hpp>
 | 
						|
#include <boost/compute/detail/parameter_cache.hpp>
 | 
						|
#include <boost/compute/memory/local_buffer.hpp>
 | 
						|
#include <boost/compute/type_traits/type_name.hpp>
 | 
						|
#include <boost/compute/utility/program_cache.hpp>
 | 
						|
 | 
						|
namespace boost {
 | 
						|
namespace compute {
 | 
						|
namespace detail {
 | 
						|
 | 
						|
template<class InputIterator>
 | 
						|
bool find_extrema_with_reduce_requirements_met(InputIterator first,
 | 
						|
                                               InputIterator last,
 | 
						|
                                               command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename std::iterator_traits<InputIterator>::value_type input_type;
 | 
						|
 | 
						|
    const device &device = queue.get_device();
 | 
						|
 | 
						|
    // device must have dedicated local memory storage
 | 
						|
    // otherwise reduction would be highly inefficient
 | 
						|
    if(device.get_info<CL_DEVICE_LOCAL_MEM_TYPE>() != CL_LOCAL)
 | 
						|
    {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
 | 
						|
    // local memory size in bytes (per compute unit)
 | 
						|
    const size_t local_mem_size = device.get_info<CL_DEVICE_LOCAL_MEM_SIZE>();
 | 
						|
 | 
						|
    std::string cache_key = std::string("__boost_find_extrema_reduce_")
 | 
						|
        + type_name<input_type>();
 | 
						|
    // load parameters
 | 
						|
    boost::shared_ptr<parameter_cache> parameters =
 | 
						|
        detail::parameter_cache::get_global_cache(device);
 | 
						|
 | 
						|
    // Get preferred work group size
 | 
						|
    size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
 | 
						|
 | 
						|
    work_group_size = (std::min)(max_work_group_size, work_group_size);
 | 
						|
 | 
						|
    // local memory size needed to perform parallel reduction
 | 
						|
    size_t required_local_mem_size = 0;
 | 
						|
    // indices size
 | 
						|
    required_local_mem_size += sizeof(uint_) * work_group_size;
 | 
						|
    // values size
 | 
						|
    required_local_mem_size += sizeof(input_type) * work_group_size;
 | 
						|
 | 
						|
    // at least 4 work groups per compute unit otherwise reduction
 | 
						|
    // would be highly inefficient
 | 
						|
    return ((required_local_mem_size * 4) <= local_mem_size);
 | 
						|
}
 | 
						|
 | 
						|
/// \internal_
 | 
						|
/// Algorithm finds the first extremum in given range, i.e., with the lowest
 | 
						|
/// index.
 | 
						|
///
 | 
						|
/// If \p use_input_idx is false, it's assumed that input data is ordered by
 | 
						|
/// increasing index and \p input_idx is not used in the algorithm.
 | 
						|
template<class InputIterator, class ResultIterator, class Compare>
 | 
						|
inline void find_extrema_with_reduce(InputIterator input,
 | 
						|
                                     vector<uint_>::iterator input_idx,
 | 
						|
                                     size_t count,
 | 
						|
                                     ResultIterator result,
 | 
						|
                                     vector<uint_>::iterator result_idx,
 | 
						|
                                     size_t work_groups_no,
 | 
						|
                                     size_t work_group_size,
 | 
						|
                                     Compare compare,
 | 
						|
                                     const bool find_minimum,
 | 
						|
                                     const bool use_input_idx,
 | 
						|
                                     command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename std::iterator_traits<InputIterator>::value_type input_type;
 | 
						|
 | 
						|
    const context &context = queue.get_context();
 | 
						|
 | 
						|
    meta_kernel k("find_extrema_reduce");
 | 
						|
    size_t count_arg = k.add_arg<uint_>("count");
 | 
						|
    size_t block_arg = k.add_arg<input_type *>(memory_object::local_memory, "block");
 | 
						|
    size_t block_idx_arg = k.add_arg<uint_ *>(memory_object::local_memory, "block_idx");
 | 
						|
 | 
						|
    k <<
 | 
						|
        // Work item global id
 | 
						|
        k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
 | 
						|
 | 
						|
        // Index of element that will be read from input buffer
 | 
						|
        k.decl<uint_>("idx") << " = gid;\n" <<
 | 
						|
 | 
						|
        k.decl<input_type>("acc") << ";\n" <<
 | 
						|
        k.decl<uint_>("acc_idx") << ";\n" <<
 | 
						|
        "if(gid < count) {\n" <<
 | 
						|
            // Real index of currently best element
 | 
						|
            "#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
 | 
						|
            k.var<uint_>("acc_idx") << " = " << input_idx[k.var<uint_>("idx")] << ";\n" <<
 | 
						|
            "#else\n" <<
 | 
						|
            k.var<uint_>("acc_idx") << " = idx;\n" <<
 | 
						|
            "#endif\n" <<
 | 
						|
 | 
						|
            // Init accumulator with first[get_global_id(0)]
 | 
						|
            "acc = " << input[k.var<uint_>("idx")] << ";\n" <<
 | 
						|
            "idx += get_global_size(0);\n" <<
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        k.decl<bool>("compare_result") << ";\n" <<
 | 
						|
        k.decl<bool>("equal") << ";\n\n" <<
 | 
						|
        "while( idx < count ){\n" <<
 | 
						|
            // Next element
 | 
						|
            k.decl<input_type>("next") << " = " << input[k.var<uint_>("idx")] << ";\n" <<
 | 
						|
            "#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
 | 
						|
            k.decl<uint_>("next_idx") << " = " << input_idx[k.var<uint_>("idx")] << ";\n" <<
 | 
						|
            "#endif\n" <<
 | 
						|
 | 
						|
            // Comparison between currently best element (acc) and next element
 | 
						|
            "#ifdef BOOST_COMPUTE_FIND_MAXIMUM\n" <<
 | 
						|
            "compare_result = " << compare(k.var<input_type>("next"),
 | 
						|
                                           k.var<input_type>("acc")) << ";\n" <<
 | 
						|
            "# ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
 | 
						|
            "equal = !compare_result && !" <<
 | 
						|
                compare(k.var<input_type>("acc"),
 | 
						|
                        k.var<input_type>("next")) << ";\n" <<
 | 
						|
            "# endif\n" <<
 | 
						|
            "#else\n" <<
 | 
						|
            "compare_result = " << compare(k.var<input_type>("acc"),
 | 
						|
                                           k.var<input_type>("next")) << ";\n" <<
 | 
						|
            "# ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
 | 
						|
            "equal = !compare_result && !" <<
 | 
						|
                compare(k.var<input_type>("next"),
 | 
						|
                        k.var<input_type>("acc")) << ";\n" <<
 | 
						|
            "# endif\n" <<
 | 
						|
            "#endif\n" <<
 | 
						|
 | 
						|
            // save the winner
 | 
						|
            "acc = compare_result ? acc : next;\n" <<
 | 
						|
            "#ifdef BOOST_COMPUTE_USE_INPUT_IDX\n" <<
 | 
						|
            "acc_idx = compare_result ? " <<
 | 
						|
                "acc_idx : " <<
 | 
						|
                "(equal ? min(acc_idx, next_idx) : next_idx);\n" <<
 | 
						|
            "#else\n" <<
 | 
						|
            "acc_idx = compare_result ? acc_idx : idx;\n" <<
 | 
						|
            "#endif\n" <<
 | 
						|
            "idx += get_global_size(0);\n" <<
 | 
						|
        "}\n\n" <<
 | 
						|
 | 
						|
        // Work item local id
 | 
						|
        k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
 | 
						|
        "block[lid] = acc;\n" <<
 | 
						|
        "block_idx[lid] = acc_idx;\n" <<
 | 
						|
        "barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
 | 
						|
        k.decl<uint_>("group_offset") <<
 | 
						|
            " = count - (get_local_size(0) * get_group_id(0));\n\n";
 | 
						|
 | 
						|
    k <<
 | 
						|
        "#pragma unroll\n"
 | 
						|
        "for(" << k.decl<uint_>("offset") << " = " << uint_(work_group_size) << " / 2; offset > 0; " <<
 | 
						|
             "offset = offset / 2) {\n" <<
 | 
						|
             "if((lid < offset) && ((lid + offset) < group_offset)) { \n" <<
 | 
						|
                 k.decl<input_type>("mine") << " = block[lid];\n" <<
 | 
						|
                 k.decl<input_type>("other") << " = block[lid+offset];\n" <<
 | 
						|
                 "#ifdef BOOST_COMPUTE_FIND_MAXIMUM\n" <<
 | 
						|
                 "compare_result = " << compare(k.var<input_type>("other"),
 | 
						|
                                                k.var<input_type>("mine")) << ";\n" <<
 | 
						|
                 "equal = !compare_result && !" <<
 | 
						|
                     compare(k.var<input_type>("mine"),
 | 
						|
                             k.var<input_type>("other")) << ";\n" <<
 | 
						|
                 "#else\n" <<
 | 
						|
                 "compare_result = " << compare(k.var<input_type>("mine"),
 | 
						|
                                                k.var<input_type>("other")) << ";\n" <<
 | 
						|
                 "equal = !compare_result && !" <<
 | 
						|
                     compare(k.var<input_type>("other"),
 | 
						|
                             k.var<input_type>("mine")) << ";\n" <<
 | 
						|
                 "#endif\n" <<
 | 
						|
                 "block[lid] = compare_result ? mine : other;\n" <<
 | 
						|
                 k.decl<uint_>("mine_idx") << " = block_idx[lid];\n" <<
 | 
						|
                 k.decl<uint_>("other_idx") << " = block_idx[lid+offset];\n" <<
 | 
						|
                 "block_idx[lid] = compare_result ? " <<
 | 
						|
                     "mine_idx : " <<
 | 
						|
                     "(equal ? min(mine_idx, other_idx) : other_idx);\n" <<
 | 
						|
             "}\n"
 | 
						|
             "barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
        "}\n\n" <<
 | 
						|
 | 
						|
         // write block result to global output
 | 
						|
        "if(lid == 0){\n" <<
 | 
						|
            result[k.var<uint_>("get_group_id(0)")] << " = block[0];\n" <<
 | 
						|
            result_idx[k.var<uint_>("get_group_id(0)")] << " = block_idx[0];\n" <<
 | 
						|
        "}";
 | 
						|
 | 
						|
    std::string options;
 | 
						|
    if(!find_minimum){
 | 
						|
        options = "-DBOOST_COMPUTE_FIND_MAXIMUM";
 | 
						|
    }
 | 
						|
    if(use_input_idx){
 | 
						|
        options += " -DBOOST_COMPUTE_USE_INPUT_IDX";
 | 
						|
    }
 | 
						|
 | 
						|
    kernel kernel = k.compile(context, options);
 | 
						|
 | 
						|
    kernel.set_arg(count_arg, static_cast<uint_>(count));
 | 
						|
    kernel.set_arg(block_arg, local_buffer<input_type>(work_group_size));
 | 
						|
    kernel.set_arg(block_idx_arg, local_buffer<uint_>(work_group_size));
 | 
						|
 | 
						|
    queue.enqueue_1d_range_kernel(kernel,
 | 
						|
                                  0,
 | 
						|
                                  work_groups_no * work_group_size,
 | 
						|
                                  work_group_size);
 | 
						|
}
 | 
						|
 | 
						|
template<class InputIterator, class ResultIterator, class Compare>
 | 
						|
inline void find_extrema_with_reduce(InputIterator input,
 | 
						|
                                     size_t count,
 | 
						|
                                     ResultIterator result,
 | 
						|
                                     vector<uint_>::iterator result_idx,
 | 
						|
                                     size_t work_groups_no,
 | 
						|
                                     size_t work_group_size,
 | 
						|
                                     Compare compare,
 | 
						|
                                     const bool find_minimum,
 | 
						|
                                     command_queue &queue)
 | 
						|
{
 | 
						|
    // dummy will not be used
 | 
						|
    buffer_iterator<uint_> dummy = result_idx;
 | 
						|
    return find_extrema_with_reduce(
 | 
						|
        input, dummy, count, result, result_idx, work_groups_no,
 | 
						|
        work_group_size, compare, find_minimum, false, queue
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
template<class InputIterator, class Compare>
 | 
						|
InputIterator find_extrema_with_reduce(InputIterator first,
 | 
						|
                                       InputIterator last,
 | 
						|
                                       Compare compare,
 | 
						|
                                       const bool find_minimum,
 | 
						|
                                       command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename std::iterator_traits<InputIterator>::difference_type difference_type;
 | 
						|
    typedef typename std::iterator_traits<InputIterator>::value_type input_type;
 | 
						|
 | 
						|
    const context &context = queue.get_context();
 | 
						|
    const device &device = queue.get_device();
 | 
						|
 | 
						|
    // Getting information about used queue and device
 | 
						|
    const size_t compute_units_no = device.get_info<CL_DEVICE_MAX_COMPUTE_UNITS>();
 | 
						|
    const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
 | 
						|
 | 
						|
    const size_t count = detail::iterator_range_size(first, last);
 | 
						|
 | 
						|
    std::string cache_key = std::string("__boost_find_extrema_with_reduce_")
 | 
						|
        + type_name<input_type>();
 | 
						|
 | 
						|
    // load parameters
 | 
						|
    boost::shared_ptr<parameter_cache> parameters =
 | 
						|
        detail::parameter_cache::get_global_cache(device);
 | 
						|
 | 
						|
    // get preferred work group size and preferred number
 | 
						|
    // of work groups per compute unit
 | 
						|
    size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
 | 
						|
    size_t work_groups_per_cu = parameters->get(cache_key, "wgpcu", 100);
 | 
						|
 | 
						|
    // calculate work group size and number of work groups
 | 
						|
    work_group_size = (std::min)(max_work_group_size, work_group_size);
 | 
						|
    size_t work_groups_no = compute_units_no * work_groups_per_cu;
 | 
						|
    work_groups_no = (std::min)(
 | 
						|
        work_groups_no,
 | 
						|
        static_cast<size_t>(std::ceil(float(count) / work_group_size))
 | 
						|
    );
 | 
						|
 | 
						|
    // phase I: finding candidates for extremum
 | 
						|
 | 
						|
    // device buffors for extremum candidates and their indices
 | 
						|
    // each work-group computes its candidate
 | 
						|
    vector<input_type> candidates(work_groups_no, context);
 | 
						|
    vector<uint_> candidates_idx(work_groups_no, context);
 | 
						|
 | 
						|
    // finding candidates for first extremum and their indices
 | 
						|
    find_extrema_with_reduce(
 | 
						|
        first, count, candidates.begin(), candidates_idx.begin(),
 | 
						|
        work_groups_no, work_group_size, compare, find_minimum, queue
 | 
						|
    );
 | 
						|
 | 
						|
    // phase II: finding extremum from among the candidates
 | 
						|
 | 
						|
    // zero-copy buffers for final result (value and index)
 | 
						|
    vector<input_type, ::boost::compute::pinned_allocator<input_type> >
 | 
						|
        result(1, context);
 | 
						|
    vector<uint_, ::boost::compute::pinned_allocator<uint_> >
 | 
						|
        result_idx(1, context);
 | 
						|
 | 
						|
    // get extremum from among the candidates
 | 
						|
    find_extrema_with_reduce(
 | 
						|
        candidates.begin(), candidates_idx.begin(), work_groups_no, result.begin(),
 | 
						|
        result_idx.begin(), 1, work_group_size, compare, find_minimum, true, queue
 | 
						|
    );
 | 
						|
 | 
						|
    // mapping extremum index to host
 | 
						|
    uint_* result_idx_host_ptr =
 | 
						|
        static_cast<uint_*>(
 | 
						|
            queue.enqueue_map_buffer(
 | 
						|
                result_idx.get_buffer(), command_queue::map_read,
 | 
						|
                0, sizeof(uint_)
 | 
						|
            )
 | 
						|
        );
 | 
						|
 | 
						|
    return first + static_cast<difference_type>(*result_idx_host_ptr);
 | 
						|
}
 | 
						|
 | 
						|
template<class InputIterator>
 | 
						|
InputIterator find_extrema_with_reduce(InputIterator first,
 | 
						|
                                       InputIterator last,
 | 
						|
                                       ::boost::compute::less<
 | 
						|
                                           typename std::iterator_traits<
 | 
						|
                                               InputIterator
 | 
						|
                                           >::value_type
 | 
						|
                                       >
 | 
						|
                                       compare,
 | 
						|
                                       const bool find_minimum,
 | 
						|
                                       command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename std::iterator_traits<InputIterator>::difference_type difference_type;
 | 
						|
    typedef typename std::iterator_traits<InputIterator>::value_type input_type;
 | 
						|
 | 
						|
    const context &context = queue.get_context();
 | 
						|
    const device &device = queue.get_device();
 | 
						|
 | 
						|
    // Getting information about used queue and device
 | 
						|
    const size_t compute_units_no = device.get_info<CL_DEVICE_MAX_COMPUTE_UNITS>();
 | 
						|
    const size_t max_work_group_size = device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
 | 
						|
 | 
						|
    const size_t count = detail::iterator_range_size(first, last);
 | 
						|
 | 
						|
    std::string cache_key = std::string("__boost_find_extrema_with_reduce_")
 | 
						|
        + type_name<input_type>();
 | 
						|
 | 
						|
    // load parameters
 | 
						|
    boost::shared_ptr<parameter_cache> parameters =
 | 
						|
        detail::parameter_cache::get_global_cache(device);
 | 
						|
 | 
						|
    // get preferred work group size and preferred number
 | 
						|
    // of work groups per compute unit
 | 
						|
    size_t work_group_size = parameters->get(cache_key, "wgsize", 256);
 | 
						|
    size_t work_groups_per_cu = parameters->get(cache_key, "wgpcu", 64);
 | 
						|
 | 
						|
    // calculate work group size and number of work groups
 | 
						|
    work_group_size = (std::min)(max_work_group_size, work_group_size);
 | 
						|
    size_t work_groups_no = compute_units_no * work_groups_per_cu;
 | 
						|
    work_groups_no = (std::min)(
 | 
						|
        work_groups_no,
 | 
						|
        static_cast<size_t>(std::ceil(float(count) / work_group_size))
 | 
						|
    );
 | 
						|
 | 
						|
    // phase I: finding candidates for extremum
 | 
						|
 | 
						|
    // device buffors for extremum candidates and their indices
 | 
						|
    // each work-group computes its candidate
 | 
						|
    // zero-copy buffers are used to eliminate copying data back to host
 | 
						|
    vector<input_type, ::boost::compute::pinned_allocator<input_type> >
 | 
						|
        candidates(work_groups_no, context);
 | 
						|
    vector<uint_, ::boost::compute::pinned_allocator <uint_> >
 | 
						|
        candidates_idx(work_groups_no, context);
 | 
						|
 | 
						|
    // finding candidates for first extremum and their indices
 | 
						|
    find_extrema_with_reduce(
 | 
						|
        first, count, candidates.begin(), candidates_idx.begin(),
 | 
						|
        work_groups_no, work_group_size, compare, find_minimum, queue
 | 
						|
    );
 | 
						|
 | 
						|
    // phase II: finding extremum from among the candidates
 | 
						|
 | 
						|
    // mapping candidates and their indices to host
 | 
						|
    input_type* candidates_host_ptr =
 | 
						|
        static_cast<input_type*>(
 | 
						|
            queue.enqueue_map_buffer(
 | 
						|
                candidates.get_buffer(), command_queue::map_read,
 | 
						|
                0, work_groups_no * sizeof(input_type)
 | 
						|
            )
 | 
						|
        );
 | 
						|
 | 
						|
    uint_* candidates_idx_host_ptr =
 | 
						|
        static_cast<uint_*>(
 | 
						|
            queue.enqueue_map_buffer(
 | 
						|
                candidates_idx.get_buffer(), command_queue::map_read,
 | 
						|
                0, work_groups_no * sizeof(uint_)
 | 
						|
            )
 | 
						|
        );
 | 
						|
 | 
						|
    input_type* i = candidates_host_ptr;
 | 
						|
    uint_* idx = candidates_idx_host_ptr;
 | 
						|
    uint_* extremum_idx = idx;
 | 
						|
    input_type extremum = *candidates_host_ptr;
 | 
						|
    i++; idx++;
 | 
						|
 | 
						|
    // find extremum (serial) from among the candidates on host
 | 
						|
    if(!find_minimum) {
 | 
						|
        while(idx != (candidates_idx_host_ptr + work_groups_no)) {
 | 
						|
            input_type next = *i;
 | 
						|
            bool compare_result =  next > extremum;
 | 
						|
            bool equal = next == extremum;
 | 
						|
            extremum = compare_result ? next : extremum;
 | 
						|
            extremum_idx = compare_result ? idx : extremum_idx;
 | 
						|
            extremum_idx = equal ? ((*extremum_idx < *idx) ? extremum_idx : idx) : extremum_idx;
 | 
						|
            idx++, i++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        while(idx != (candidates_idx_host_ptr + work_groups_no)) {
 | 
						|
            input_type next = *i;
 | 
						|
            bool compare_result = next < extremum;
 | 
						|
            bool equal = next == extremum;
 | 
						|
            extremum = compare_result ? next : extremum;
 | 
						|
            extremum_idx = compare_result ? idx : extremum_idx;
 | 
						|
            extremum_idx = equal ? ((*extremum_idx < *idx) ? extremum_idx : idx) : extremum_idx;
 | 
						|
            idx++, i++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return first + static_cast<difference_type>(*extremum_idx);
 | 
						|
}
 | 
						|
 | 
						|
} // end detail namespace
 | 
						|
} // end compute namespace
 | 
						|
} // end boost namespace
 | 
						|
 | 
						|
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_EXTREMA_WITH_REDUCE_HPP
 |