810 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			810 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//  Copyright John Maddock 2008.
 | 
						|
//  Use, modification and distribution are subject to the
 | 
						|
//  Boost Software License, Version 1.0. (See accompanying file
 | 
						|
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
//
 | 
						|
// Wrapper that works with mpfr_class defined in gmpfrxx.h
 | 
						|
// See http://math.berkeley.edu/~wilken/code/gmpfrxx/
 | 
						|
// Also requires the gmp and mpfr libraries.
 | 
						|
//
 | 
						|
 | 
						|
#ifndef BOOST_MATH_E_FLOAT_BINDINGS_HPP
 | 
						|
#define BOOST_MATH_E_FLOAT_BINDINGS_HPP
 | 
						|
 | 
						|
#include <boost/config.hpp>
 | 
						|
 | 
						|
 | 
						|
#include <e_float/e_float.h>
 | 
						|
#include <functions/functions.h>
 | 
						|
 | 
						|
#include <boost/math/tools/precision.hpp>
 | 
						|
#include <boost/math/tools/real_cast.hpp>
 | 
						|
#include <boost/math/policies/policy.hpp>
 | 
						|
#include <boost/math/distributions/fwd.hpp>
 | 
						|
#include <boost/math/special_functions/math_fwd.hpp>
 | 
						|
#include <boost/math/special_functions/fpclassify.hpp>
 | 
						|
#include <boost/math/bindings/detail/big_digamma.hpp>
 | 
						|
#include <boost/math/bindings/detail/big_lanczos.hpp>
 | 
						|
#include <boost/lexical_cast.hpp>
 | 
						|
 | 
						|
 | 
						|
namespace boost{ namespace math{ namespace ef{
 | 
						|
 | 
						|
class e_float
 | 
						|
{
 | 
						|
public:
 | 
						|
   // Constructors:
 | 
						|
   e_float() {}
 | 
						|
   e_float(const ::e_float& c) : m_value(c){}
 | 
						|
   e_float(char c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
 | 
						|
   e_float(wchar_t c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
#endif
 | 
						|
   e_float(unsigned char c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
   e_float(signed char c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
   e_float(unsigned short c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
   e_float(short c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
   e_float(unsigned int c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
   e_float(int c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
   e_float(unsigned long c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float((UINT64)c);
 | 
						|
   }
 | 
						|
   e_float(long c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float((INT64)c);
 | 
						|
   }
 | 
						|
#ifdef BOOST_HAS_LONG_LONG
 | 
						|
   e_float(boost::ulong_long_type c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
   e_float(boost::long_long_type c)
 | 
						|
   {
 | 
						|
      m_value = ::e_float(c);
 | 
						|
   }
 | 
						|
#endif
 | 
						|
   e_float(float c)
 | 
						|
   {
 | 
						|
      assign_large_real(c);
 | 
						|
   }
 | 
						|
   e_float(double c)
 | 
						|
   {
 | 
						|
      assign_large_real(c);
 | 
						|
   }
 | 
						|
   e_float(long double c)
 | 
						|
   {
 | 
						|
      assign_large_real(c);
 | 
						|
   }
 | 
						|
 | 
						|
   // Assignment:
 | 
						|
   e_float& operator=(char c) { m_value = ::e_float(c); return *this; }
 | 
						|
   e_float& operator=(unsigned char c) { m_value = ::e_float(c); return *this; }
 | 
						|
   e_float& operator=(signed char c) { m_value = ::e_float(c); return *this; }
 | 
						|
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
 | 
						|
   e_float& operator=(wchar_t c) { m_value = ::e_float(c); return *this; }
 | 
						|
#endif
 | 
						|
   e_float& operator=(short c) { m_value = ::e_float(c); return *this; }
 | 
						|
   e_float& operator=(unsigned short c) { m_value = ::e_float(c); return *this; }
 | 
						|
   e_float& operator=(int c) { m_value = ::e_float(c); return *this; }
 | 
						|
   e_float& operator=(unsigned int c) { m_value = ::e_float(c); return *this; }
 | 
						|
   e_float& operator=(long c) { m_value = ::e_float((INT64)c); return *this; }
 | 
						|
   e_float& operator=(unsigned long c) { m_value = ::e_float((UINT64)c); return *this; }
 | 
						|
#ifdef BOOST_HAS_LONG_LONG
 | 
						|
   e_float& operator=(boost::long_long_type c) { m_value = ::e_float(c); return *this; }
 | 
						|
   e_float& operator=(boost::ulong_long_type c) { m_value = ::e_float(c); return *this; }
 | 
						|
#endif
 | 
						|
   e_float& operator=(float c) { assign_large_real(c); return *this; }
 | 
						|
   e_float& operator=(double c) { assign_large_real(c); return *this; }
 | 
						|
   e_float& operator=(long double c) { assign_large_real(c); return *this; }
 | 
						|
 | 
						|
   // Access:
 | 
						|
   ::e_float& value(){ return m_value; }
 | 
						|
   ::e_float const& value()const{ return m_value; }
 | 
						|
 | 
						|
   // Member arithmetic:
 | 
						|
   e_float& operator+=(const e_float& other)
 | 
						|
   { m_value += other.value(); return *this; }
 | 
						|
   e_float& operator-=(const e_float& other)
 | 
						|
   { m_value -= other.value(); return *this; }
 | 
						|
   e_float& operator*=(const e_float& other)
 | 
						|
   { m_value *= other.value(); return *this; }
 | 
						|
   e_float& operator/=(const e_float& other)
 | 
						|
   { m_value /= other.value(); return *this; }
 | 
						|
   e_float operator-()const
 | 
						|
   { return -m_value; }
 | 
						|
   e_float const& operator+()const
 | 
						|
   { return *this; }
 | 
						|
 | 
						|
private:
 | 
						|
   ::e_float m_value;
 | 
						|
 | 
						|
   template <class V>
 | 
						|
   void assign_large_real(const V& a)
 | 
						|
   {
 | 
						|
      using std::frexp;
 | 
						|
      using std::ldexp;
 | 
						|
      using std::floor;
 | 
						|
      if (a == 0) {
 | 
						|
         m_value = ::ef::zero();
 | 
						|
         return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (a == 1) {
 | 
						|
         m_value = ::ef::one();
 | 
						|
         return;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((boost::math::isinf)(a))
 | 
						|
      {
 | 
						|
         m_value = a > 0 ? m_value.my_value_inf() : -m_value.my_value_inf();
 | 
						|
         return;
 | 
						|
      }
 | 
						|
      if((boost::math::isnan)(a))
 | 
						|
      {
 | 
						|
         m_value = m_value.my_value_nan();
 | 
						|
         return;
 | 
						|
      }
 | 
						|
 | 
						|
      int e;
 | 
						|
      long double f, term;
 | 
						|
      ::e_float t;
 | 
						|
      m_value = ::ef::zero();
 | 
						|
 | 
						|
      f = frexp(a, &e);
 | 
						|
 | 
						|
      ::e_float shift = ::ef::pow2(30);
 | 
						|
 | 
						|
      while(f)
 | 
						|
      {
 | 
						|
         // extract 30 bits from f:
 | 
						|
         f = ldexp(f, 30);
 | 
						|
         term = floor(f);
 | 
						|
         e -= 30;
 | 
						|
         m_value *= shift;
 | 
						|
         m_value += ::e_float(static_cast<INT64>(term));
 | 
						|
         f -= term;
 | 
						|
      }
 | 
						|
      m_value *= ::ef::pow2(e);
 | 
						|
   }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Non-member arithmetic:
 | 
						|
inline e_float operator+(const e_float& a, const e_float& b)
 | 
						|
{
 | 
						|
   e_float result(a);
 | 
						|
   result += b;
 | 
						|
   return result;
 | 
						|
}
 | 
						|
inline e_float operator-(const e_float& a, const e_float& b)
 | 
						|
{
 | 
						|
   e_float result(a);
 | 
						|
   result -= b;
 | 
						|
   return result;
 | 
						|
}
 | 
						|
inline e_float operator*(const e_float& a, const e_float& b)
 | 
						|
{
 | 
						|
   e_float result(a);
 | 
						|
   result *= b;
 | 
						|
   return result;
 | 
						|
}
 | 
						|
inline e_float operator/(const e_float& a, const e_float& b)
 | 
						|
{
 | 
						|
   e_float result(a);
 | 
						|
   result /= b;
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
// Comparison:
 | 
						|
inline bool operator == (const e_float& a, const e_float& b)
 | 
						|
{ return a.value() == b.value() ? true : false; }
 | 
						|
inline bool operator != (const e_float& a, const e_float& b)
 | 
						|
{ return a.value() != b.value() ? true : false;}
 | 
						|
inline bool operator < (const e_float& a, const e_float& b)
 | 
						|
{ return a.value() < b.value() ? true : false; }
 | 
						|
inline bool operator <= (const e_float& a, const e_float& b)
 | 
						|
{ return a.value() <= b.value() ? true : false; }
 | 
						|
inline bool operator > (const e_float& a, const e_float& b)
 | 
						|
{ return a.value() > b.value() ? true : false; }
 | 
						|
inline bool operator >= (const e_float& a, const e_float& b)
 | 
						|
{ return a.value() >= b.value() ? true : false; }
 | 
						|
 | 
						|
std::istream& operator >> (std::istream& is, e_float& f)
 | 
						|
{
 | 
						|
   return is >> f.value();
 | 
						|
}
 | 
						|
 | 
						|
std::ostream& operator << (std::ostream& os, const e_float& f)
 | 
						|
{
 | 
						|
   return os << f.value();
 | 
						|
}
 | 
						|
 | 
						|
inline e_float fabs(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::fabs(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float abs(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::fabs(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float floor(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::floor(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float ceil(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::ceil(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float pow(const e_float& v, const e_float& w)
 | 
						|
{
 | 
						|
   return ::ef::pow(v.value(), w.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float pow(const e_float& v, int i)
 | 
						|
{
 | 
						|
   return ::ef::pow(v.value(), ::e_float(i));
 | 
						|
}
 | 
						|
 | 
						|
inline e_float exp(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::exp(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float log(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::log(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float sqrt(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::sqrt(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float sin(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::sin(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float cos(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::cos(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float tan(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::tan(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float acos(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::acos(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float asin(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::asin(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float atan(const e_float& v)
 | 
						|
{
 | 
						|
   return ::ef::atan(v.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float atan2(const e_float& v, const e_float& u)
 | 
						|
{
 | 
						|
   return ::ef::atan2(v.value(), u.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float ldexp(const e_float& v, int e)
 | 
						|
{
 | 
						|
   return v.value() * ::ef::pow2(e);
 | 
						|
}
 | 
						|
 | 
						|
inline e_float frexp(const e_float& v, int* expon)
 | 
						|
{
 | 
						|
   double d;
 | 
						|
   INT64 i;
 | 
						|
   v.value().extract_parts(d, i);
 | 
						|
   *expon = static_cast<int>(i);
 | 
						|
   return v.value() * ::ef::pow2(-i);
 | 
						|
}
 | 
						|
 | 
						|
inline e_float sinh (const e_float& x)
 | 
						|
{
 | 
						|
   return ::ef::sinh(x.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float cosh (const e_float& x)
 | 
						|
{
 | 
						|
   return ::ef::cosh(x.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float tanh (const e_float& x)
 | 
						|
{
 | 
						|
   return ::ef::tanh(x.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float asinh (const e_float& x)
 | 
						|
{
 | 
						|
   return ::ef::asinh(x.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float acosh (const e_float& x)
 | 
						|
{
 | 
						|
   return ::ef::acosh(x.value());
 | 
						|
}
 | 
						|
 | 
						|
inline e_float atanh (const e_float& x)
 | 
						|
{
 | 
						|
   return ::ef::atanh(x.value());
 | 
						|
}
 | 
						|
 | 
						|
e_float fmod(const e_float& v1, const e_float& v2)
 | 
						|
{
 | 
						|
   e_float n;
 | 
						|
   if(v1 < 0)
 | 
						|
      n = ceil(v1 / v2);
 | 
						|
   else
 | 
						|
      n = floor(v1 / v2);
 | 
						|
   return v1 - n * v2;
 | 
						|
}
 | 
						|
 | 
						|
} namespace detail{
 | 
						|
 | 
						|
template <>
 | 
						|
inline int fpclassify_imp< boost::math::ef::e_float> BOOST_NO_MACRO_EXPAND(boost::math::ef::e_float x, const generic_tag<true>&)
 | 
						|
{
 | 
						|
   if(x.value().isnan())
 | 
						|
      return FP_NAN;
 | 
						|
   if(x.value().isinf())
 | 
						|
      return FP_INFINITE;
 | 
						|
   if(x == 0)
 | 
						|
      return FP_ZERO;
 | 
						|
   return FP_NORMAL;
 | 
						|
}
 | 
						|
 | 
						|
} namespace ef{
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
inline int itrunc(const e_float& v, const Policy& pol)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   e_float r = boost::math::trunc(v, pol);
 | 
						|
   if(fabs(r) > (std::numeric_limits<int>::max)())
 | 
						|
      return static_cast<int>(policies::raise_rounding_error("boost::math::itrunc<%1%>(%1%)", 0, 0, v, pol));
 | 
						|
   return static_cast<int>(r.value().extract_int64());
 | 
						|
}
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
inline long ltrunc(const e_float& v, const Policy& pol)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   e_float r = boost::math::trunc(v, pol);
 | 
						|
   if(fabs(r) > (std::numeric_limits<long>::max)())
 | 
						|
      return static_cast<long>(policies::raise_rounding_error("boost::math::ltrunc<%1%>(%1%)", 0, 0L, v, pol));
 | 
						|
   return static_cast<long>(r.value().extract_int64());
 | 
						|
}
 | 
						|
 | 
						|
#ifdef BOOST_HAS_LONG_LONG
 | 
						|
template <class Policy>
 | 
						|
inline boost::long_long_type lltrunc(const e_float& v, const Policy& pol)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   e_float r = boost::math::trunc(v, pol);
 | 
						|
   if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)())
 | 
						|
      return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::lltrunc<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64());
 | 
						|
   return static_cast<boost::long_long_type>(r.value().extract_int64());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
inline int iround(const e_float& v, const Policy& pol)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   e_float r = boost::math::round(v, pol);
 | 
						|
   if(fabs(r) > (std::numeric_limits<int>::max)())
 | 
						|
      return static_cast<int>(policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", 0, v, 0, pol).value().extract_int64());
 | 
						|
   return static_cast<int>(r.value().extract_int64());
 | 
						|
}
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
inline long lround(const e_float& v, const Policy& pol)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   e_float r = boost::math::round(v, pol);
 | 
						|
   if(fabs(r) > (std::numeric_limits<long>::max)())
 | 
						|
      return static_cast<long int>(policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", 0, v, 0L, pol).value().extract_int64());
 | 
						|
   return static_cast<long int>(r.value().extract_int64());
 | 
						|
}
 | 
						|
 | 
						|
#ifdef BOOST_HAS_LONG_LONG
 | 
						|
template <class Policy>
 | 
						|
inline boost::long_long_type llround(const e_float& v, const Policy& pol)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   e_float r = boost::math::round(v, pol);
 | 
						|
   if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)())
 | 
						|
      return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64());
 | 
						|
   return static_cast<boost::long_long_type>(r.value().extract_int64());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
}}}
 | 
						|
 | 
						|
namespace std{
 | 
						|
 | 
						|
   template<>
 | 
						|
   class numeric_limits< ::boost::math::ef::e_float> : public numeric_limits< ::e_float>
 | 
						|
   {
 | 
						|
   public:
 | 
						|
      static const ::boost::math::ef::e_float (min) (void)
 | 
						|
      {
 | 
						|
         return (numeric_limits< ::e_float>::min)();
 | 
						|
      }
 | 
						|
      static const ::boost::math::ef::e_float (max) (void)
 | 
						|
      {
 | 
						|
         return (numeric_limits< ::e_float>::max)();
 | 
						|
      }
 | 
						|
      static const ::boost::math::ef::e_float epsilon (void)
 | 
						|
      {
 | 
						|
         return (numeric_limits< ::e_float>::epsilon)();
 | 
						|
      }
 | 
						|
      static const ::boost::math::ef::e_float round_error(void)
 | 
						|
      {
 | 
						|
         return (numeric_limits< ::e_float>::round_error)();
 | 
						|
      }
 | 
						|
      static const ::boost::math::ef::e_float infinity (void)
 | 
						|
      {
 | 
						|
         return (numeric_limits< ::e_float>::infinity)();
 | 
						|
      }
 | 
						|
      static const ::boost::math::ef::e_float quiet_NaN (void)
 | 
						|
      {
 | 
						|
         return (numeric_limits< ::e_float>::quiet_NaN)();
 | 
						|
      }
 | 
						|
      //
 | 
						|
      // e_float's supplied digits member is wrong 
 | 
						|
      // - it should be same the same as digits 10
 | 
						|
      // - given that radix is 10.
 | 
						|
      //
 | 
						|
      static const int digits = digits10;
 | 
						|
   };
 | 
						|
 | 
						|
} // namespace std
 | 
						|
 | 
						|
namespace boost{ namespace math{
 | 
						|
 | 
						|
namespace policies{
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
struct precision< ::boost::math::ef::e_float, Policy>
 | 
						|
{
 | 
						|
   typedef typename Policy::precision_type precision_type;
 | 
						|
   typedef digits2<((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L> digits_2;
 | 
						|
   typedef typename mpl::if_c<
 | 
						|
      ((digits_2::value <= precision_type::value) 
 | 
						|
      || (Policy::precision_type::value <= 0)),
 | 
						|
      // Default case, full precision for RealType:
 | 
						|
      digits_2,
 | 
						|
      // User customised precision:
 | 
						|
      precision_type
 | 
						|
   >::type type;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
namespace tools{
 | 
						|
 | 
						|
template <>
 | 
						|
inline int digits< ::boost::math::ef::e_float>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC( ::boost::math::ef::e_float))
 | 
						|
{
 | 
						|
   return ((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L;
 | 
						|
}
 | 
						|
 | 
						|
template <>
 | 
						|
inline  ::boost::math::ef::e_float root_epsilon< ::boost::math::ef::e_float>()
 | 
						|
{
 | 
						|
   return detail::root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), mpl::int_<0>());
 | 
						|
}
 | 
						|
 | 
						|
template <>
 | 
						|
inline  ::boost::math::ef::e_float forth_root_epsilon< ::boost::math::ef::e_float>()
 | 
						|
{
 | 
						|
   return detail::forth_root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), mpl::int_<0>());
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
namespace lanczos{
 | 
						|
 | 
						|
template<class Policy>
 | 
						|
struct lanczos<boost::math::ef::e_float, Policy>
 | 
						|
{
 | 
						|
   typedef typename mpl::if_c<
 | 
						|
      std::numeric_limits< ::e_float>::digits10 < 22,
 | 
						|
      lanczos13UDT,
 | 
						|
      typename mpl::if_c<
 | 
						|
         std::numeric_limits< ::e_float>::digits10 < 36,
 | 
						|
         lanczos22UDT,
 | 
						|
         typename mpl::if_c<
 | 
						|
            std::numeric_limits< ::e_float>::digits10 < 50,
 | 
						|
            lanczos31UDT,
 | 
						|
            typename mpl::if_c<
 | 
						|
               std::numeric_limits< ::e_float>::digits10 < 110,
 | 
						|
               lanczos61UDT,
 | 
						|
               undefined_lanczos
 | 
						|
            >::type
 | 
						|
         >::type
 | 
						|
      >::type
 | 
						|
   >::type type;
 | 
						|
};
 | 
						|
 | 
						|
} // namespace lanczos
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
inline boost::math::ef::e_float skewness(const extreme_value_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
 | 
						|
{
 | 
						|
   //
 | 
						|
   // This is 12 * sqrt(6) * zeta(3) / pi^3:
 | 
						|
   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
 | 
						|
   //
 | 
						|
   return boost::lexical_cast<boost::math::ef::e_float>("1.1395470994046486574927930193898461120875997958366");
 | 
						|
}
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
inline boost::math::ef::e_float skewness(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
 | 
						|
{
 | 
						|
  // using namespace boost::math::constants;
 | 
						|
  return boost::lexical_cast<boost::math::ef::e_float>("0.63111065781893713819189935154422777984404221106391");
 | 
						|
  // Computed using NTL at 150 bit, about 50 decimal digits.
 | 
						|
  // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
 | 
						|
}
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
inline boost::math::ef::e_float kurtosis(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
 | 
						|
{
 | 
						|
  // using namespace boost::math::constants;
 | 
						|
  return boost::lexical_cast<boost::math::ef::e_float>("3.2450893006876380628486604106197544154170667057995");
 | 
						|
  // Computed using NTL at 150 bit, about 50 decimal digits.
 | 
						|
  // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
 | 
						|
  // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
 | 
						|
}
 | 
						|
 | 
						|
template <class Policy>
 | 
						|
inline boost::math::ef::e_float kurtosis_excess(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
 | 
						|
{
 | 
						|
  //using namespace boost::math::constants;
 | 
						|
  // Computed using NTL at 150 bit, about 50 decimal digits.
 | 
						|
  return boost::lexical_cast<boost::math::ef::e_float>("0.2450893006876380628486604106197544154170667057995");
 | 
						|
  // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
 | 
						|
  //   (four_minus_pi<RealType>() * four_minus_pi<RealType>());
 | 
						|
} // kurtosis
 | 
						|
 | 
						|
namespace detail{
 | 
						|
 | 
						|
//
 | 
						|
// Version of Digamma accurate to ~100 decimal digits.
 | 
						|
//
 | 
						|
template <class Policy>
 | 
						|
boost::math::ef::e_float digamma_imp(boost::math::ef::e_float x, const mpl::int_<0>* , const Policy& pol)
 | 
						|
{
 | 
						|
   //
 | 
						|
   // This handles reflection of negative arguments, and all our
 | 
						|
   // eboost::math::ef::e_floator handling, then forwards to the T-specific approximation.
 | 
						|
   //
 | 
						|
   BOOST_MATH_STD_USING // ADL of std functions.
 | 
						|
 | 
						|
   boost::math::ef::e_float result = 0;
 | 
						|
   //
 | 
						|
   // Check for negative arguments and use reflection:
 | 
						|
   //
 | 
						|
   if(x < 0)
 | 
						|
   {
 | 
						|
      // Reflect:
 | 
						|
      x = 1 - x;
 | 
						|
      // Argument reduction for tan:
 | 
						|
      boost::math::ef::e_float remainder = x - floor(x);
 | 
						|
      // Shift to negative if > 0.5:
 | 
						|
      if(remainder > 0.5)
 | 
						|
      {
 | 
						|
         remainder -= 1;
 | 
						|
      }
 | 
						|
      //
 | 
						|
      // check for evaluation at a negative pole:
 | 
						|
      //
 | 
						|
      if(remainder == 0)
 | 
						|
      {
 | 
						|
         return policies::raise_pole_error<boost::math::ef::e_float>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
 | 
						|
      }
 | 
						|
      result = constants::pi<boost::math::ef::e_float>() / tan(constants::pi<boost::math::ef::e_float>() * remainder);
 | 
						|
   }
 | 
						|
   result += big_digamma(x);
 | 
						|
   return result;
 | 
						|
}
 | 
						|
boost::math::ef::e_float bessel_i0(boost::math::ef::e_float x)
 | 
						|
{
 | 
						|
    static const boost::math::ef::e_float P1[] = {
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375249e+15"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-5.5050369673018427753e+14"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-3.2940087627407749166e+13"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-8.4925101247114157499e+11"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-1.1912746104985237192e+10"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-1.0313066708737980747e+08"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-5.9545626019847898221e+05"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-2.4125195876041896775e+03"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-7.0935347449210549190e+00"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-1.5453977791786851041e-02"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-2.5172644670688975051e-05"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-3.0517226450451067446e-08"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-2.6843448573468483278e-11"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-1.5982226675653184646e-14"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-5.2487866627945699800e-18"),
 | 
						|
    };
 | 
						|
    static const boost::math::ef::e_float Q1[] = {
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375245e+15"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("7.8858692566751002988e+12"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-1.2207067397808979846e+10"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("1.0377081058062166144e+07"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-4.8527560179962773045e+03"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("1.0"),
 | 
						|
    };
 | 
						|
    static const boost::math::ef::e_float P2[] = {
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-2.2210262233306573296e-04"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("1.3067392038106924055e-02"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-4.4700805721174453923e-01"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("5.5674518371240761397e+00"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-2.3517945679239481621e+01"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("3.1611322818701131207e+01"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-9.6090021968656180000e+00"),
 | 
						|
    };
 | 
						|
    static const boost::math::ef::e_float Q2[] = {
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-5.5194330231005480228e-04"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("3.2547697594819615062e-02"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-1.1151759188741312645e+00"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("1.3982595353892851542e+01"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-6.0228002066743340583e+01"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("8.5539563258012929600e+01"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("-3.1446690275135491500e+01"),
 | 
						|
        boost::lexical_cast<boost::math::ef::e_float>("1.0"),
 | 
						|
    };
 | 
						|
    boost::math::ef::e_float value, factor, r;
 | 
						|
 | 
						|
    BOOST_MATH_STD_USING
 | 
						|
    using namespace boost::math::tools;
 | 
						|
 | 
						|
    if (x < 0)
 | 
						|
    {
 | 
						|
        x = -x;                         // even function
 | 
						|
    }
 | 
						|
    if (x == 0)
 | 
						|
    {
 | 
						|
        return static_cast<boost::math::ef::e_float>(1);
 | 
						|
    }
 | 
						|
    if (x <= 15)                        // x in (0, 15]
 | 
						|
    {
 | 
						|
        boost::math::ef::e_float y = x * x;
 | 
						|
        value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
 | 
						|
    }
 | 
						|
    else                                // x in (15, \infty)
 | 
						|
    {
 | 
						|
        boost::math::ef::e_float y = 1 / x - boost::math::ef::e_float(1) / 15;
 | 
						|
        r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
 | 
						|
        factor = exp(x) / sqrt(x);
 | 
						|
        value = factor * r;
 | 
						|
    }
 | 
						|
 | 
						|
    return value;
 | 
						|
}
 | 
						|
 | 
						|
boost::math::ef::e_float bessel_i1(boost::math::ef::e_float x)
 | 
						|
{
 | 
						|
    static const boost::math::ef::e_float P1[] = {
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.4577180278143463643e+15"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.7732037840791591320e+14"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-6.9876779648010090070e+12"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.3357437682275493024e+11"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.4828267606612366099e+09"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.0588550724769347106e+07"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-5.1894091982308017540e+04"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.8225946631657315931e+02"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-4.7207090827310162436e-01"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-9.1746443287817501309e-04"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.3466829827635152875e-06"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.4831904935994647675e-09"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.1928788903603238754e-12"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-6.5245515583151902910e-16"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.9705291802535139930e-19"),
 | 
						|
    };
 | 
						|
    static const boost::math::ef::e_float Q1[] = {
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-2.9154360556286927285e+15"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("9.7887501377547640438e+12"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.4386907088588283434e+10"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("1.1594225856856884006e+07"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-5.1326864679904189920e+03"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("1.0"),
 | 
						|
    };
 | 
						|
    static const boost::math::ef::e_float P2[] = {
 | 
						|
        lexical_cast<boost::math::ef::e_float>("1.4582087408985668208e-05"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-8.9359825138577646443e-04"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("2.9204895411257790122e-02"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-3.4198728018058047439e-01"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("1.3960118277609544334e+00"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-1.9746376087200685843e+00"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("8.5591872901933459000e-01"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-6.0437159056137599999e-02"),
 | 
						|
    };
 | 
						|
    static const boost::math::ef::e_float Q2[] = {
 | 
						|
        lexical_cast<boost::math::ef::e_float>("3.7510433111922824643e-05"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-2.2835624489492512649e-03"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("7.4212010813186530069e-02"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-8.5017476463217924408e-01"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("3.2593714889036996297e+00"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("-3.8806586721556593450e+00"),
 | 
						|
        lexical_cast<boost::math::ef::e_float>("1.0"),
 | 
						|
    };
 | 
						|
    boost::math::ef::e_float value, factor, r, w;
 | 
						|
 | 
						|
    BOOST_MATH_STD_USING
 | 
						|
    using namespace boost::math::tools;
 | 
						|
 | 
						|
    w = abs(x);
 | 
						|
    if (x == 0)
 | 
						|
    {
 | 
						|
        return static_cast<boost::math::ef::e_float>(0);
 | 
						|
    }
 | 
						|
    if (w <= 15)                        // w in (0, 15]
 | 
						|
    {
 | 
						|
        boost::math::ef::e_float y = x * x;
 | 
						|
        r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
 | 
						|
        factor = w;
 | 
						|
        value = factor * r;
 | 
						|
    }
 | 
						|
    else                                // w in (15, \infty)
 | 
						|
    {
 | 
						|
        boost::math::ef::e_float y = 1 / w - boost::math::ef::e_float(1) / 15;
 | 
						|
        r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
 | 
						|
        factor = exp(w) / sqrt(w);
 | 
						|
        value = factor * r;
 | 
						|
    }
 | 
						|
 | 
						|
    if (x < 0)
 | 
						|
    {
 | 
						|
        value *= -value;                 // odd function
 | 
						|
    }
 | 
						|
    return value;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace detail
 | 
						|
 | 
						|
}}
 | 
						|
#endif // BOOST_MATH_E_FLOAT_BINDINGS_HPP
 | 
						|
 |