930 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			930 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
// boost\math\distributions\non_central_beta.hpp
 | 
						|
 | 
						|
// Copyright John Maddock 2008.
 | 
						|
 | 
						|
// Use, modification and distribution are subject to the
 | 
						|
// Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt
 | 
						|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
 | 
						|
#define BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
 | 
						|
 | 
						|
#include <boost/math/distributions/fwd.hpp>
 | 
						|
#include <boost/math/special_functions/beta.hpp> // for incomplete gamma. gamma_q
 | 
						|
#include <boost/math/distributions/complement.hpp> // complements
 | 
						|
#include <boost/math/distributions/beta.hpp> // central distribution
 | 
						|
#include <boost/math/distributions/detail/generic_mode.hpp>
 | 
						|
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
 | 
						|
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
 | 
						|
#include <boost/math/tools/roots.hpp> // for root finding.
 | 
						|
#include <boost/math/tools/series.hpp>
 | 
						|
 | 
						|
namespace boost
 | 
						|
{
 | 
						|
   namespace math
 | 
						|
   {
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      class non_central_beta_distribution;
 | 
						|
 | 
						|
      namespace detail{
 | 
						|
 | 
						|
         template <class T, class Policy>
 | 
						|
         T non_central_beta_p(T a, T b, T lam, T x, T y, const Policy& pol, T init_val = 0)
 | 
						|
         {
 | 
						|
            BOOST_MATH_STD_USING
 | 
						|
               using namespace boost::math;
 | 
						|
            //
 | 
						|
            // Variables come first:
 | 
						|
            //
 | 
						|
            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | 
						|
            T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | 
						|
            T l2 = lam / 2;
 | 
						|
            //
 | 
						|
            // k is the starting point for iteration, and is the
 | 
						|
            // maximum of the poisson weighting term,
 | 
						|
            // note that unlike other similar code, we do not set
 | 
						|
            // k to zero, when l2 is small, as forward iteration
 | 
						|
            // is unstable:
 | 
						|
            //
 | 
						|
            int k = itrunc(l2);
 | 
						|
            if(k == 0)
 | 
						|
               k = 1;
 | 
						|
               // Starting Poisson weight:
 | 
						|
            T pois = gamma_p_derivative(T(k+1), l2, pol);
 | 
						|
            if(pois == 0)
 | 
						|
               return init_val;
 | 
						|
            // recurance term:
 | 
						|
            T xterm;
 | 
						|
            // Starting beta term:
 | 
						|
            T beta = x < y
 | 
						|
               ? detail::ibeta_imp(T(a + k), b, x, pol, false, true, &xterm)
 | 
						|
               : detail::ibeta_imp(b, T(a + k), y, pol, true, true, &xterm);
 | 
						|
 | 
						|
            xterm *= y / (a + b + k - 1);
 | 
						|
            T poisf(pois), betaf(beta), xtermf(xterm);
 | 
						|
            T sum = init_val;
 | 
						|
 | 
						|
            if((beta == 0) && (xterm == 0))
 | 
						|
               return init_val;
 | 
						|
 | 
						|
            //
 | 
						|
            // Backwards recursion first, this is the stable
 | 
						|
            // direction for recursion:
 | 
						|
            //
 | 
						|
            T last_term = 0;
 | 
						|
            boost::uintmax_t count = k;
 | 
						|
            for(int i = k; i >= 0; --i)
 | 
						|
            {
 | 
						|
               T term = beta * pois;
 | 
						|
               sum += term;
 | 
						|
               if(((fabs(term/sum) < errtol) && (last_term >= term)) || (term == 0))
 | 
						|
               {
 | 
						|
                  count = k - i;
 | 
						|
                  break;
 | 
						|
               }
 | 
						|
               pois *= i / l2;
 | 
						|
               beta += xterm;
 | 
						|
               xterm *= (a + i - 1) / (x * (a + b + i - 2));
 | 
						|
               last_term = term;
 | 
						|
            }
 | 
						|
            for(int i = k + 1; ; ++i)
 | 
						|
            {
 | 
						|
               poisf *= l2 / i;
 | 
						|
               xtermf *= (x * (a + b + i - 2)) / (a + i - 1);
 | 
						|
               betaf -= xtermf;
 | 
						|
 | 
						|
               T term = poisf * betaf;
 | 
						|
               sum += term;
 | 
						|
               if((fabs(term/sum) < errtol) || (term == 0))
 | 
						|
               {
 | 
						|
                  break;
 | 
						|
               }
 | 
						|
               if(static_cast<boost::uintmax_t>(count + i - k) > max_iter)
 | 
						|
               {
 | 
						|
                  return policies::raise_evaluation_error(
 | 
						|
                     "cdf(non_central_beta_distribution<%1%>, %1%)",
 | 
						|
                     "Series did not converge, closest value was %1%", sum, pol);
 | 
						|
               }
 | 
						|
            }
 | 
						|
            return sum;
 | 
						|
         }
 | 
						|
 | 
						|
         template <class T, class Policy>
 | 
						|
         T non_central_beta_q(T a, T b, T lam, T x, T y, const Policy& pol, T init_val = 0)
 | 
						|
         {
 | 
						|
            BOOST_MATH_STD_USING
 | 
						|
               using namespace boost::math;
 | 
						|
            //
 | 
						|
            // Variables come first:
 | 
						|
            //
 | 
						|
            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | 
						|
            T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | 
						|
            T l2 = lam / 2;
 | 
						|
            //
 | 
						|
            // k is the starting point for iteration, and is the
 | 
						|
            // maximum of the poisson weighting term:
 | 
						|
            //
 | 
						|
            int k = itrunc(l2);
 | 
						|
            T pois;
 | 
						|
            if(k <= 30)
 | 
						|
            {
 | 
						|
               //
 | 
						|
               // Might as well start at 0 since we'll likely have this number of terms anyway:
 | 
						|
               //
 | 
						|
               if(a + b > 1)
 | 
						|
                  k = 0;
 | 
						|
               else if(k == 0)
 | 
						|
                  k = 1;
 | 
						|
            }
 | 
						|
            if(k == 0)
 | 
						|
            {
 | 
						|
               // Starting Poisson weight:
 | 
						|
               pois = exp(-l2);
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
               // Starting Poisson weight:
 | 
						|
               pois = gamma_p_derivative(T(k+1), l2, pol);
 | 
						|
            }
 | 
						|
            if(pois == 0)
 | 
						|
               return init_val;
 | 
						|
            // recurance term:
 | 
						|
            T xterm;
 | 
						|
            // Starting beta term:
 | 
						|
            T beta = x < y
 | 
						|
               ? detail::ibeta_imp(T(a + k), b, x, pol, true, true, &xterm)
 | 
						|
               : detail::ibeta_imp(b, T(a + k), y, pol, false, true, &xterm);
 | 
						|
 | 
						|
            xterm *= y / (a + b + k - 1);
 | 
						|
            T poisf(pois), betaf(beta), xtermf(xterm);
 | 
						|
            T sum = init_val;
 | 
						|
            if((beta == 0) && (xterm == 0))
 | 
						|
               return init_val;
 | 
						|
            //
 | 
						|
            // Forwards recursion first, this is the stable
 | 
						|
            // direction for recursion, and the location
 | 
						|
            // of the bulk of the sum:
 | 
						|
            //
 | 
						|
            T last_term = 0;
 | 
						|
            boost::uintmax_t count = 0;
 | 
						|
            for(int i = k + 1; ; ++i)
 | 
						|
            {
 | 
						|
               poisf *= l2 / i;
 | 
						|
               xtermf *= (x * (a + b + i - 2)) / (a + i - 1);
 | 
						|
               betaf += xtermf;
 | 
						|
 | 
						|
               T term = poisf * betaf;
 | 
						|
               sum += term;
 | 
						|
               if((fabs(term/sum) < errtol) && (last_term >= term))
 | 
						|
               {
 | 
						|
                  count = i - k;
 | 
						|
                  break;
 | 
						|
               }
 | 
						|
               if(static_cast<boost::uintmax_t>(i - k) > max_iter)
 | 
						|
               {
 | 
						|
                  return policies::raise_evaluation_error(
 | 
						|
                     "cdf(non_central_beta_distribution<%1%>, %1%)",
 | 
						|
                     "Series did not converge, closest value was %1%", sum, pol);
 | 
						|
               }
 | 
						|
               last_term = term;
 | 
						|
            }
 | 
						|
            for(int i = k; i >= 0; --i)
 | 
						|
            {
 | 
						|
               T term = beta * pois;
 | 
						|
               sum += term;
 | 
						|
               if(fabs(term/sum) < errtol)
 | 
						|
               {
 | 
						|
                  break;
 | 
						|
               }
 | 
						|
               if(static_cast<boost::uintmax_t>(count + k - i) > max_iter)
 | 
						|
               {
 | 
						|
                  return policies::raise_evaluation_error(
 | 
						|
                     "cdf(non_central_beta_distribution<%1%>, %1%)",
 | 
						|
                     "Series did not converge, closest value was %1%", sum, pol);
 | 
						|
               }
 | 
						|
               pois *= i / l2;
 | 
						|
               beta -= xterm;
 | 
						|
               xterm *= (a + i - 1) / (x * (a + b + i - 2));
 | 
						|
            }
 | 
						|
            return sum;
 | 
						|
         }
 | 
						|
 | 
						|
         template <class RealType, class Policy>
 | 
						|
         inline RealType non_central_beta_cdf(RealType x, RealType y, RealType a, RealType b, RealType l, bool invert, const Policy&)
 | 
						|
         {
 | 
						|
            typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | 
						|
            typedef typename policies::normalise<
 | 
						|
               Policy,
 | 
						|
               policies::promote_float<false>,
 | 
						|
               policies::promote_double<false>,
 | 
						|
               policies::discrete_quantile<>,
 | 
						|
               policies::assert_undefined<> >::type forwarding_policy;
 | 
						|
 | 
						|
            BOOST_MATH_STD_USING
 | 
						|
 | 
						|
            if(x == 0)
 | 
						|
               return invert ? 1.0f : 0.0f;
 | 
						|
            if(y == 0)
 | 
						|
               return invert ? 0.0f : 1.0f;
 | 
						|
            value_type result;
 | 
						|
            value_type c = a + b + l / 2;
 | 
						|
            value_type cross = 1 - (b / c) * (1 + l / (2 * c * c));
 | 
						|
            if(l == 0)
 | 
						|
               result = cdf(boost::math::beta_distribution<RealType, Policy>(a, b), x);
 | 
						|
            else if(x > cross)
 | 
						|
            {
 | 
						|
               // Complement is the smaller of the two:
 | 
						|
               result = detail::non_central_beta_q(
 | 
						|
                  static_cast<value_type>(a),
 | 
						|
                  static_cast<value_type>(b),
 | 
						|
                  static_cast<value_type>(l),
 | 
						|
                  static_cast<value_type>(x),
 | 
						|
                  static_cast<value_type>(y),
 | 
						|
                  forwarding_policy(),
 | 
						|
                  static_cast<value_type>(invert ? 0 : -1));
 | 
						|
               invert = !invert;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
               result = detail::non_central_beta_p(
 | 
						|
                  static_cast<value_type>(a),
 | 
						|
                  static_cast<value_type>(b),
 | 
						|
                  static_cast<value_type>(l),
 | 
						|
                  static_cast<value_type>(x),
 | 
						|
                  static_cast<value_type>(y),
 | 
						|
                  forwarding_policy(),
 | 
						|
                  static_cast<value_type>(invert ? -1 : 0));
 | 
						|
            }
 | 
						|
            if(invert)
 | 
						|
               result = -result;
 | 
						|
            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | 
						|
               result,
 | 
						|
               "boost::math::non_central_beta_cdf<%1%>(%1%, %1%, %1%)");
 | 
						|
         }
 | 
						|
 | 
						|
         template <class T, class Policy>
 | 
						|
         struct nc_beta_quantile_functor
 | 
						|
         {
 | 
						|
            nc_beta_quantile_functor(const non_central_beta_distribution<T,Policy>& d, T t, bool c)
 | 
						|
               : dist(d), target(t), comp(c) {}
 | 
						|
 | 
						|
            T operator()(const T& x)
 | 
						|
            {
 | 
						|
               return comp ?
 | 
						|
                  T(target - cdf(complement(dist, x)))
 | 
						|
                  : T(cdf(dist, x) - target);
 | 
						|
            }
 | 
						|
 | 
						|
         private:
 | 
						|
            non_central_beta_distribution<T,Policy> dist;
 | 
						|
            T target;
 | 
						|
            bool comp;
 | 
						|
         };
 | 
						|
 | 
						|
         //
 | 
						|
         // This is more or less a copy of bracket_and_solve_root, but
 | 
						|
         // modified to search only the interval [0,1] using similar
 | 
						|
         // heuristics.
 | 
						|
         //
 | 
						|
         template <class F, class T, class Tol, class Policy>
 | 
						|
         std::pair<T, T> bracket_and_solve_root_01(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
 | 
						|
         {
 | 
						|
            BOOST_MATH_STD_USING
 | 
						|
               static const char* function = "boost::math::tools::bracket_and_solve_root_01<%1%>";
 | 
						|
            //
 | 
						|
            // Set up inital brackets:
 | 
						|
            //
 | 
						|
            T a = guess;
 | 
						|
            T b = a;
 | 
						|
            T fa = f(a);
 | 
						|
            T fb = fa;
 | 
						|
            //
 | 
						|
            // Set up invocation count:
 | 
						|
            //
 | 
						|
            boost::uintmax_t count = max_iter - 1;
 | 
						|
 | 
						|
            if((fa < 0) == (guess < 0 ? !rising : rising))
 | 
						|
            {
 | 
						|
               //
 | 
						|
               // Zero is to the right of b, so walk upwards
 | 
						|
               // until we find it:
 | 
						|
               //
 | 
						|
               while((boost::math::sign)(fb) == (boost::math::sign)(fa))
 | 
						|
               {
 | 
						|
                  if(count == 0)
 | 
						|
                  {
 | 
						|
                     b = policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol);
 | 
						|
                     return std::make_pair(a, b);
 | 
						|
                  }
 | 
						|
                  //
 | 
						|
                  // Heuristic: every 20 iterations we double the growth factor in case the
 | 
						|
                  // initial guess was *really* bad !
 | 
						|
                  //
 | 
						|
                  if((max_iter - count) % 20 == 0)
 | 
						|
                     factor *= 2;
 | 
						|
                  //
 | 
						|
                  // Now go ahead and move are guess by "factor",
 | 
						|
                  // we do this by reducing 1-guess by factor:
 | 
						|
                  //
 | 
						|
                  a = b;
 | 
						|
                  fa = fb;
 | 
						|
                  b = 1 - ((1 - b) / factor);
 | 
						|
                  fb = f(b);
 | 
						|
                  --count;
 | 
						|
                  BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
 | 
						|
               }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
               //
 | 
						|
               // Zero is to the left of a, so walk downwards
 | 
						|
               // until we find it:
 | 
						|
               //
 | 
						|
               while((boost::math::sign)(fb) == (boost::math::sign)(fa))
 | 
						|
               {
 | 
						|
                  if(fabs(a) < tools::min_value<T>())
 | 
						|
                  {
 | 
						|
                     // Escape route just in case the answer is zero!
 | 
						|
                     max_iter -= count;
 | 
						|
                     max_iter += 1;
 | 
						|
                     return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
 | 
						|
                  }
 | 
						|
                  if(count == 0)
 | 
						|
                  {
 | 
						|
                     a = policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol);
 | 
						|
                     return std::make_pair(a, b);
 | 
						|
                  }
 | 
						|
                  //
 | 
						|
                  // Heuristic: every 20 iterations we double the growth factor in case the
 | 
						|
                  // initial guess was *really* bad !
 | 
						|
                  //
 | 
						|
                  if((max_iter - count) % 20 == 0)
 | 
						|
                     factor *= 2;
 | 
						|
                  //
 | 
						|
                  // Now go ahead and move are guess by "factor":
 | 
						|
                  //
 | 
						|
                  b = a;
 | 
						|
                  fb = fa;
 | 
						|
                  a /= factor;
 | 
						|
                  fa = f(a);
 | 
						|
                  --count;
 | 
						|
                  BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
 | 
						|
               }
 | 
						|
            }
 | 
						|
            max_iter -= count;
 | 
						|
            max_iter += 1;
 | 
						|
            std::pair<T, T> r = toms748_solve(
 | 
						|
               f,
 | 
						|
               (a < 0 ? b : a),
 | 
						|
               (a < 0 ? a : b),
 | 
						|
               (a < 0 ? fb : fa),
 | 
						|
               (a < 0 ? fa : fb),
 | 
						|
               tol,
 | 
						|
               count,
 | 
						|
               pol);
 | 
						|
            max_iter += count;
 | 
						|
            BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
 | 
						|
            return r;
 | 
						|
         }
 | 
						|
 | 
						|
         template <class RealType, class Policy>
 | 
						|
         RealType nc_beta_quantile(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& p, bool comp)
 | 
						|
         {
 | 
						|
            static const char* function = "quantile(non_central_beta_distribution<%1%>, %1%)";
 | 
						|
            typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | 
						|
            typedef typename policies::normalise<
 | 
						|
               Policy,
 | 
						|
               policies::promote_float<false>,
 | 
						|
               policies::promote_double<false>,
 | 
						|
               policies::discrete_quantile<>,
 | 
						|
               policies::assert_undefined<> >::type forwarding_policy;
 | 
						|
 | 
						|
            value_type a = dist.alpha();
 | 
						|
            value_type b = dist.beta();
 | 
						|
            value_type l = dist.non_centrality();
 | 
						|
            value_type r;
 | 
						|
            if(!beta_detail::check_alpha(
 | 
						|
               function,
 | 
						|
               a, &r, Policy())
 | 
						|
               ||
 | 
						|
            !beta_detail::check_beta(
 | 
						|
               function,
 | 
						|
               b, &r, Policy())
 | 
						|
               ||
 | 
						|
            !detail::check_non_centrality(
 | 
						|
               function,
 | 
						|
               l,
 | 
						|
               &r,
 | 
						|
               Policy())
 | 
						|
               ||
 | 
						|
            !detail::check_probability(
 | 
						|
               function,
 | 
						|
               static_cast<value_type>(p),
 | 
						|
               &r,
 | 
						|
               Policy()))
 | 
						|
                  return (RealType)r;
 | 
						|
            //
 | 
						|
            // Special cases first:
 | 
						|
            //
 | 
						|
            if(p == 0)
 | 
						|
               return comp
 | 
						|
               ? 1.0f
 | 
						|
               : 0.0f;
 | 
						|
            if(p == 1)
 | 
						|
               return !comp
 | 
						|
               ? 1.0f
 | 
						|
               : 0.0f;
 | 
						|
 | 
						|
            value_type c = a + b + l / 2;
 | 
						|
            value_type mean = 1 - (b / c) * (1 + l / (2 * c * c));
 | 
						|
            /*
 | 
						|
            //
 | 
						|
            // Calculate a normal approximation to the quantile,
 | 
						|
            // uses mean and variance approximations from:
 | 
						|
            // Algorithm AS 310:
 | 
						|
            // Computing the Non-Central Beta Distribution Function
 | 
						|
            // R. Chattamvelli; R. Shanmugam
 | 
						|
            // Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.
 | 
						|
            //
 | 
						|
            // Unfortunately, when this is wrong it tends to be *very*
 | 
						|
            // wrong, so it's disabled for now, even though it often
 | 
						|
            // gets the initial guess quite close.  Probably we could
 | 
						|
            // do much better by factoring in the skewness if only
 | 
						|
            // we could calculate it....
 | 
						|
            //
 | 
						|
            value_type delta = l / 2;
 | 
						|
            value_type delta2 = delta * delta;
 | 
						|
            value_type delta3 = delta * delta2;
 | 
						|
            value_type delta4 = delta2 * delta2;
 | 
						|
            value_type G = c * (c + 1) + delta;
 | 
						|
            value_type alpha = a + b;
 | 
						|
            value_type alpha2 = alpha * alpha;
 | 
						|
            value_type eta = (2 * alpha + 1) * (2 * alpha + 1) + 1;
 | 
						|
            value_type H = 3 * alpha2 + 5 * alpha + 2;
 | 
						|
            value_type F = alpha2 * (alpha + 1) + H * delta
 | 
						|
               + (2 * alpha + 4) * delta2 + delta3;
 | 
						|
            value_type P = (3 * alpha + 1) * (9 * alpha + 17)
 | 
						|
               + 2 * alpha * (3 * alpha + 2) * (3 * alpha + 4) + 15;
 | 
						|
            value_type Q = 54 * alpha2 + 162 * alpha + 130;
 | 
						|
            value_type R = 6 * (6 * alpha + 11);
 | 
						|
            value_type D = delta
 | 
						|
               * (H * H + 2 * P * delta + Q * delta2 + R * delta3 + 9 * delta4);
 | 
						|
            value_type variance = (b / G)
 | 
						|
               * (1 + delta * (l * l + 3 * l + eta) / (G * G))
 | 
						|
               - (b * b / F) * (1 + D / (F * F));
 | 
						|
            value_type sd = sqrt(variance);
 | 
						|
 | 
						|
            value_type guess = comp
 | 
						|
               ? quantile(complement(normal_distribution<RealType, Policy>(static_cast<RealType>(mean), static_cast<RealType>(sd)), p))
 | 
						|
               : quantile(normal_distribution<RealType, Policy>(static_cast<RealType>(mean), static_cast<RealType>(sd)), p);
 | 
						|
 | 
						|
            if(guess >= 1)
 | 
						|
               guess = mean;
 | 
						|
            if(guess <= tools::min_value<value_type>())
 | 
						|
               guess = mean;
 | 
						|
            */
 | 
						|
            value_type guess = mean;
 | 
						|
            detail::nc_beta_quantile_functor<value_type, Policy>
 | 
						|
               f(non_central_beta_distribution<value_type, Policy>(a, b, l), p, comp);
 | 
						|
            tools::eps_tolerance<value_type> tol(policies::digits<RealType, Policy>());
 | 
						|
            boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
 | 
						|
 | 
						|
            std::pair<value_type, value_type> ir
 | 
						|
               = bracket_and_solve_root_01(
 | 
						|
                  f, guess, value_type(2.5), true, tol,
 | 
						|
                  max_iter, Policy());
 | 
						|
            value_type result = ir.first + (ir.second - ir.first) / 2;
 | 
						|
 | 
						|
            if(max_iter >= policies::get_max_root_iterations<Policy>())
 | 
						|
            {
 | 
						|
               return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
 | 
						|
                  " either there is no answer to quantile of the non central beta distribution"
 | 
						|
                  " or the answer is infinite.  Current best guess is %1%",
 | 
						|
                  policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | 
						|
                     result,
 | 
						|
                     function), Policy());
 | 
						|
            }
 | 
						|
            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | 
						|
               result,
 | 
						|
               function);
 | 
						|
         }
 | 
						|
 | 
						|
         template <class T, class Policy>
 | 
						|
         T non_central_beta_pdf(T a, T b, T lam, T x, T y, const Policy& pol)
 | 
						|
         {
 | 
						|
            BOOST_MATH_STD_USING
 | 
						|
            //
 | 
						|
            // Special cases:
 | 
						|
            //
 | 
						|
            if((x == 0) || (y == 0))
 | 
						|
               return 0;
 | 
						|
            //
 | 
						|
            // Variables come first:
 | 
						|
            //
 | 
						|
            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | 
						|
            T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | 
						|
            T l2 = lam / 2;
 | 
						|
            //
 | 
						|
            // k is the starting point for iteration, and is the
 | 
						|
            // maximum of the poisson weighting term:
 | 
						|
            //
 | 
						|
            int k = itrunc(l2);
 | 
						|
            // Starting Poisson weight:
 | 
						|
            T pois = gamma_p_derivative(T(k+1), l2, pol);
 | 
						|
            // Starting beta term:
 | 
						|
            T beta = x < y ?
 | 
						|
               ibeta_derivative(a + k, b, x, pol)
 | 
						|
               : ibeta_derivative(b, a + k, y, pol);
 | 
						|
            T sum = 0;
 | 
						|
            T poisf(pois);
 | 
						|
            T betaf(beta);
 | 
						|
 | 
						|
            //
 | 
						|
            // Stable backwards recursion first:
 | 
						|
            //
 | 
						|
            boost::uintmax_t count = k;
 | 
						|
            for(int i = k; i >= 0; --i)
 | 
						|
            {
 | 
						|
               T term = beta * pois;
 | 
						|
               sum += term;
 | 
						|
               if((fabs(term/sum) < errtol) || (term == 0))
 | 
						|
               {
 | 
						|
                  count = k - i;
 | 
						|
                  break;
 | 
						|
               }
 | 
						|
               pois *= i / l2;
 | 
						|
               beta *= (a + i - 1) / (x * (a + i + b - 1));
 | 
						|
            }
 | 
						|
            for(int i = k + 1; ; ++i)
 | 
						|
            {
 | 
						|
               poisf *= l2 / i;
 | 
						|
               betaf *= x * (a + b + i - 1) / (a + i - 1);
 | 
						|
 | 
						|
               T term = poisf * betaf;
 | 
						|
               sum += term;
 | 
						|
               if((fabs(term/sum) < errtol) || (term == 0))
 | 
						|
               {
 | 
						|
                  break;
 | 
						|
               }
 | 
						|
               if(static_cast<boost::uintmax_t>(count + i - k) > max_iter)
 | 
						|
               {
 | 
						|
                  return policies::raise_evaluation_error(
 | 
						|
                     "pdf(non_central_beta_distribution<%1%>, %1%)",
 | 
						|
                     "Series did not converge, closest value was %1%", sum, pol);
 | 
						|
               }
 | 
						|
            }
 | 
						|
            return sum;
 | 
						|
         }
 | 
						|
 | 
						|
         template <class RealType, class Policy>
 | 
						|
         RealType nc_beta_pdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
 | 
						|
         {
 | 
						|
            BOOST_MATH_STD_USING
 | 
						|
            static const char* function = "pdf(non_central_beta_distribution<%1%>, %1%)";
 | 
						|
            typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | 
						|
            typedef typename policies::normalise<
 | 
						|
               Policy,
 | 
						|
               policies::promote_float<false>,
 | 
						|
               policies::promote_double<false>,
 | 
						|
               policies::discrete_quantile<>,
 | 
						|
               policies::assert_undefined<> >::type forwarding_policy;
 | 
						|
 | 
						|
            value_type a = dist.alpha();
 | 
						|
            value_type b = dist.beta();
 | 
						|
            value_type l = dist.non_centrality();
 | 
						|
            value_type r;
 | 
						|
            if(!beta_detail::check_alpha(
 | 
						|
               function,
 | 
						|
               a, &r, Policy())
 | 
						|
               ||
 | 
						|
            !beta_detail::check_beta(
 | 
						|
               function,
 | 
						|
               b, &r, Policy())
 | 
						|
               ||
 | 
						|
            !detail::check_non_centrality(
 | 
						|
               function,
 | 
						|
               l,
 | 
						|
               &r,
 | 
						|
               Policy())
 | 
						|
               ||
 | 
						|
            !beta_detail::check_x(
 | 
						|
               function,
 | 
						|
               static_cast<value_type>(x),
 | 
						|
               &r,
 | 
						|
               Policy()))
 | 
						|
                  return (RealType)r;
 | 
						|
 | 
						|
            if(l == 0)
 | 
						|
               return pdf(boost::math::beta_distribution<RealType, Policy>(dist.alpha(), dist.beta()), x);
 | 
						|
            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | 
						|
               non_central_beta_pdf(a, b, l, static_cast<value_type>(x), value_type(1 - static_cast<value_type>(x)), forwarding_policy()),
 | 
						|
               "function");
 | 
						|
         }
 | 
						|
 | 
						|
         template <class T>
 | 
						|
         struct hypergeometric_2F2_sum
 | 
						|
         {
 | 
						|
            typedef T result_type;
 | 
						|
            hypergeometric_2F2_sum(T a1_, T a2_, T b1_, T b2_, T z_) : a1(a1_), a2(a2_), b1(b1_), b2(b2_), z(z_), term(1), k(0) {}
 | 
						|
            T operator()()
 | 
						|
            {
 | 
						|
               T result = term;
 | 
						|
               term *= a1 * a2 / (b1 * b2);
 | 
						|
               a1 += 1;
 | 
						|
               a2 += 1;
 | 
						|
               b1 += 1;
 | 
						|
               b2 += 1;
 | 
						|
               k += 1;
 | 
						|
               term /= k;
 | 
						|
               term *= z;
 | 
						|
               return result;
 | 
						|
            }
 | 
						|
            T a1, a2, b1, b2, z, term, k;
 | 
						|
         };
 | 
						|
 | 
						|
         template <class T, class Policy>
 | 
						|
         T hypergeometric_2F2(T a1, T a2, T b1, T b2, T z, const Policy& pol)
 | 
						|
         {
 | 
						|
            typedef typename policies::evaluation<T, Policy>::type value_type;
 | 
						|
 | 
						|
            const char* function = "boost::math::detail::hypergeometric_2F2<%1%>(%1%,%1%,%1%,%1%,%1%)";
 | 
						|
 | 
						|
            hypergeometric_2F2_sum<value_type> s(a1, a2, b1, b2, z);
 | 
						|
            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | 
						|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
 | 
						|
            value_type zero = 0;
 | 
						|
            value_type result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<value_type, Policy>(), max_iter, zero);
 | 
						|
#else
 | 
						|
            value_type result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<value_type, Policy>(), max_iter);
 | 
						|
#endif
 | 
						|
            policies::check_series_iterations<T>(function, max_iter, pol);
 | 
						|
            return policies::checked_narrowing_cast<T, Policy>(result, function);
 | 
						|
         }
 | 
						|
 | 
						|
      } // namespace detail
 | 
						|
 | 
						|
      template <class RealType = double, class Policy = policies::policy<> >
 | 
						|
      class non_central_beta_distribution
 | 
						|
      {
 | 
						|
      public:
 | 
						|
         typedef RealType value_type;
 | 
						|
         typedef Policy policy_type;
 | 
						|
 | 
						|
         non_central_beta_distribution(RealType a_, RealType b_, RealType lambda) : a(a_), b(b_), ncp(lambda)
 | 
						|
         {
 | 
						|
            const char* function = "boost::math::non_central_beta_distribution<%1%>::non_central_beta_distribution(%1%,%1%)";
 | 
						|
            RealType r;
 | 
						|
            beta_detail::check_alpha(
 | 
						|
               function,
 | 
						|
               a, &r, Policy());
 | 
						|
            beta_detail::check_beta(
 | 
						|
               function,
 | 
						|
               b, &r, Policy());
 | 
						|
            detail::check_non_centrality(
 | 
						|
               function,
 | 
						|
               lambda,
 | 
						|
               &r,
 | 
						|
               Policy());
 | 
						|
         } // non_central_beta_distribution constructor.
 | 
						|
 | 
						|
         RealType alpha() const
 | 
						|
         { // Private data getter function.
 | 
						|
            return a;
 | 
						|
         }
 | 
						|
         RealType beta() const
 | 
						|
         { // Private data getter function.
 | 
						|
            return b;
 | 
						|
         }
 | 
						|
         RealType non_centrality() const
 | 
						|
         { // Private data getter function.
 | 
						|
            return ncp;
 | 
						|
         }
 | 
						|
      private:
 | 
						|
         // Data member, initialized by constructor.
 | 
						|
         RealType a;   // alpha.
 | 
						|
         RealType b;   // beta.
 | 
						|
         RealType ncp; // non-centrality parameter
 | 
						|
      }; // template <class RealType, class Policy> class non_central_beta_distribution
 | 
						|
 | 
						|
      typedef non_central_beta_distribution<double> non_central_beta; // Reserved name of type double.
 | 
						|
 | 
						|
      // Non-member functions to give properties of the distribution.
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline const std::pair<RealType, RealType> range(const non_central_beta_distribution<RealType, Policy>& /* dist */)
 | 
						|
      { // Range of permissible values for random variable k.
 | 
						|
         using boost::math::tools::max_value;
 | 
						|
         return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
 | 
						|
      }
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline const std::pair<RealType, RealType> support(const non_central_beta_distribution<RealType, Policy>& /* dist */)
 | 
						|
      { // Range of supported values for random variable k.
 | 
						|
         // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
 | 
						|
         using boost::math::tools::max_value;
 | 
						|
         return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
 | 
						|
      }
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType mode(const non_central_beta_distribution<RealType, Policy>& dist)
 | 
						|
      { // mode.
 | 
						|
         static const char* function = "mode(non_central_beta_distribution<%1%> const&)";
 | 
						|
 | 
						|
         RealType a = dist.alpha();
 | 
						|
         RealType b = dist.beta();
 | 
						|
         RealType l = dist.non_centrality();
 | 
						|
         RealType r;
 | 
						|
         if(!beta_detail::check_alpha(
 | 
						|
               function,
 | 
						|
               a, &r, Policy())
 | 
						|
               ||
 | 
						|
            !beta_detail::check_beta(
 | 
						|
               function,
 | 
						|
               b, &r, Policy())
 | 
						|
               ||
 | 
						|
            !detail::check_non_centrality(
 | 
						|
               function,
 | 
						|
               l,
 | 
						|
               &r,
 | 
						|
               Policy()))
 | 
						|
                  return (RealType)r;
 | 
						|
         RealType c = a + b + l / 2;
 | 
						|
         RealType mean = 1 - (b / c) * (1 + l / (2 * c * c));
 | 
						|
         return detail::generic_find_mode_01(
 | 
						|
            dist,
 | 
						|
            mean,
 | 
						|
            function);
 | 
						|
      }
 | 
						|
 | 
						|
      //
 | 
						|
      // We don't have the necessary information to implement
 | 
						|
      // these at present.  These are just disabled for now,
 | 
						|
      // prototypes retained so we can fill in the blanks
 | 
						|
      // later:
 | 
						|
      //
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType mean(const non_central_beta_distribution<RealType, Policy>& dist)
 | 
						|
      {
 | 
						|
         BOOST_MATH_STD_USING
 | 
						|
         RealType a = dist.alpha();
 | 
						|
         RealType b = dist.beta();
 | 
						|
         RealType d = dist.non_centrality();
 | 
						|
         RealType apb = a + b;
 | 
						|
         return exp(-d / 2) * a * detail::hypergeometric_2F2<RealType, Policy>(1 + a, apb, a, 1 + apb, d / 2, Policy()) / apb;
 | 
						|
      } // mean
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType variance(const non_central_beta_distribution<RealType, Policy>& dist)
 | 
						|
      { 
 | 
						|
         //
 | 
						|
         // Relative error of this function may be arbitarily large... absolute
 | 
						|
         // error will be small however... that's the best we can do for now.
 | 
						|
         //
 | 
						|
         BOOST_MATH_STD_USING
 | 
						|
         RealType a = dist.alpha();
 | 
						|
         RealType b = dist.beta();
 | 
						|
         RealType d = dist.non_centrality();
 | 
						|
         RealType apb = a + b;
 | 
						|
         RealType result = detail::hypergeometric_2F2(RealType(1 + a), apb, a, RealType(1 + apb), RealType(d / 2), Policy());
 | 
						|
         result *= result * -exp(-d) * a * a / (apb * apb);
 | 
						|
         result += exp(-d / 2) * a * (1 + a) * detail::hypergeometric_2F2(RealType(2 + a), apb, a, RealType(2 + apb), RealType(d / 2), Policy()) / (apb * (1 + apb));
 | 
						|
         return result;
 | 
						|
      }
 | 
						|
 | 
						|
      // RealType standard_deviation(const non_central_beta_distribution<RealType, Policy>& dist)
 | 
						|
      // standard_deviation provided by derived accessors.
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType skewness(const non_central_beta_distribution<RealType, Policy>& /*dist*/)
 | 
						|
      { // skewness = sqrt(l).
 | 
						|
         const char* function = "boost::math::non_central_beta_distribution<%1%>::skewness()";
 | 
						|
         typedef typename Policy::assert_undefined_type assert_type;
 | 
						|
         BOOST_STATIC_ASSERT(assert_type::value == 0);
 | 
						|
 | 
						|
         return policies::raise_evaluation_error<RealType>(
 | 
						|
            function,
 | 
						|
            "This function is not yet implemented, the only sensible result is %1%.",
 | 
						|
            std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
 | 
						|
      }
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType kurtosis_excess(const non_central_beta_distribution<RealType, Policy>& /*dist*/)
 | 
						|
      {
 | 
						|
         const char* function = "boost::math::non_central_beta_distribution<%1%>::kurtosis_excess()";
 | 
						|
         typedef typename Policy::assert_undefined_type assert_type;
 | 
						|
         BOOST_STATIC_ASSERT(assert_type::value == 0);
 | 
						|
 | 
						|
         return policies::raise_evaluation_error<RealType>(
 | 
						|
            function,
 | 
						|
            "This function is not yet implemented, the only sensible result is %1%.",
 | 
						|
            std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
 | 
						|
      } // kurtosis_excess
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType kurtosis(const non_central_beta_distribution<RealType, Policy>& dist)
 | 
						|
      {
 | 
						|
         return kurtosis_excess(dist) + 3;
 | 
						|
      }
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType pdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
 | 
						|
      { // Probability Density/Mass Function.
 | 
						|
         return detail::nc_beta_pdf(dist, x);
 | 
						|
      } // pdf
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      RealType cdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
 | 
						|
      {
 | 
						|
         const char* function = "boost::math::non_central_beta_distribution<%1%>::cdf(%1%)";
 | 
						|
            RealType a = dist.alpha();
 | 
						|
            RealType b = dist.beta();
 | 
						|
            RealType l = dist.non_centrality();
 | 
						|
            RealType r;
 | 
						|
            if(!beta_detail::check_alpha(
 | 
						|
               function,
 | 
						|
               a, &r, Policy())
 | 
						|
               ||
 | 
						|
            !beta_detail::check_beta(
 | 
						|
               function,
 | 
						|
               b, &r, Policy())
 | 
						|
               ||
 | 
						|
            !detail::check_non_centrality(
 | 
						|
               function,
 | 
						|
               l,
 | 
						|
               &r,
 | 
						|
               Policy())
 | 
						|
               ||
 | 
						|
            !beta_detail::check_x(
 | 
						|
               function,
 | 
						|
               x,
 | 
						|
               &r,
 | 
						|
               Policy()))
 | 
						|
                  return (RealType)r;
 | 
						|
 | 
						|
         if(l == 0)
 | 
						|
            return cdf(beta_distribution<RealType, Policy>(a, b), x);
 | 
						|
 | 
						|
         return detail::non_central_beta_cdf(x, RealType(1 - x), a, b, l, false, Policy());
 | 
						|
      } // cdf
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      RealType cdf(const complemented2_type<non_central_beta_distribution<RealType, Policy>, RealType>& c)
 | 
						|
      { // Complemented Cumulative Distribution Function
 | 
						|
         const char* function = "boost::math::non_central_beta_distribution<%1%>::cdf(%1%)";
 | 
						|
         non_central_beta_distribution<RealType, Policy> const& dist = c.dist;
 | 
						|
            RealType a = dist.alpha();
 | 
						|
            RealType b = dist.beta();
 | 
						|
            RealType l = dist.non_centrality();
 | 
						|
            RealType x = c.param;
 | 
						|
            RealType r;
 | 
						|
            if(!beta_detail::check_alpha(
 | 
						|
               function,
 | 
						|
               a, &r, Policy())
 | 
						|
               ||
 | 
						|
            !beta_detail::check_beta(
 | 
						|
               function,
 | 
						|
               b, &r, Policy())
 | 
						|
               ||
 | 
						|
            !detail::check_non_centrality(
 | 
						|
               function,
 | 
						|
               l,
 | 
						|
               &r,
 | 
						|
               Policy())
 | 
						|
               ||
 | 
						|
            !beta_detail::check_x(
 | 
						|
               function,
 | 
						|
               x,
 | 
						|
               &r,
 | 
						|
               Policy()))
 | 
						|
                  return (RealType)r;
 | 
						|
 | 
						|
         if(l == 0)
 | 
						|
            return cdf(complement(beta_distribution<RealType, Policy>(a, b), x));
 | 
						|
 | 
						|
         return detail::non_central_beta_cdf(x, RealType(1 - x), a, b, l, true, Policy());
 | 
						|
      } // ccdf
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType quantile(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& p)
 | 
						|
      { // Quantile (or Percent Point) function.
 | 
						|
         return detail::nc_beta_quantile(dist, p, false);
 | 
						|
      } // quantile
 | 
						|
 | 
						|
      template <class RealType, class Policy>
 | 
						|
      inline RealType quantile(const complemented2_type<non_central_beta_distribution<RealType, Policy>, RealType>& c)
 | 
						|
      { // Quantile (or Percent Point) function.
 | 
						|
         return detail::nc_beta_quantile(c.dist, c.param, true);
 | 
						|
      } // quantile complement.
 | 
						|
 | 
						|
   } // namespace math
 | 
						|
} // namespace boost
 | 
						|
 | 
						|
// This include must be at the end, *after* the accessors
 | 
						|
// for this distribution have been defined, in order to
 | 
						|
// keep compilers that support two-phase lookup happy.
 | 
						|
#include <boost/math/distributions/detail/derived_accessors.hpp>
 | 
						|
 | 
						|
#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
 | 
						|
 |