510 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			510 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//  (C) Copyright John Maddock 2005-2006.
 | 
						|
//  Use, modification and distribution are subject to the
 | 
						|
//  Boost Software License, Version 1.0. (See accompanying file
 | 
						|
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#ifndef BOOST_MATH_LOG1P_INCLUDED
 | 
						|
#define BOOST_MATH_LOG1P_INCLUDED
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#pragma once
 | 
						|
#pragma warning(push)
 | 
						|
#pragma warning(disable:4702) // Unreachable code (release mode only warning)
 | 
						|
#endif
 | 
						|
 | 
						|
#include <boost/config/no_tr1/cmath.hpp>
 | 
						|
#include <math.h> // platform's ::log1p
 | 
						|
#include <boost/limits.hpp>
 | 
						|
#include <boost/math/tools/config.hpp>
 | 
						|
#include <boost/math/tools/series.hpp>
 | 
						|
#include <boost/math/tools/rational.hpp>
 | 
						|
#include <boost/math/tools/big_constant.hpp>
 | 
						|
#include <boost/math/policies/error_handling.hpp>
 | 
						|
#include <boost/math/special_functions/math_fwd.hpp>
 | 
						|
 | 
						|
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
 | 
						|
#  include <boost/static_assert.hpp>
 | 
						|
#else
 | 
						|
#  include <boost/assert.hpp>
 | 
						|
#endif
 | 
						|
 | 
						|
namespace boost{ namespace math{
 | 
						|
 | 
						|
namespace detail
 | 
						|
{
 | 
						|
  // Functor log1p_series returns the next term in the Taylor series
 | 
						|
  //   pow(-1, k-1)*pow(x, k) / k
 | 
						|
  // each time that operator() is invoked.
 | 
						|
  //
 | 
						|
  template <class T>
 | 
						|
  struct log1p_series
 | 
						|
  {
 | 
						|
     typedef T result_type;
 | 
						|
 | 
						|
     log1p_series(T x)
 | 
						|
        : k(0), m_mult(-x), m_prod(-1){}
 | 
						|
 | 
						|
     T operator()()
 | 
						|
     {
 | 
						|
        m_prod *= m_mult;
 | 
						|
        return m_prod / ++k;
 | 
						|
     }
 | 
						|
 | 
						|
     int count()const
 | 
						|
     {
 | 
						|
        return k;
 | 
						|
     }
 | 
						|
 | 
						|
  private:
 | 
						|
     int k;
 | 
						|
     const T m_mult;
 | 
						|
     T m_prod;
 | 
						|
     log1p_series(const log1p_series&);
 | 
						|
     log1p_series& operator=(const log1p_series&);
 | 
						|
  };
 | 
						|
 | 
						|
// Algorithm log1p is part of C99, but is not yet provided by many compilers.
 | 
						|
//
 | 
						|
// This version uses a Taylor series expansion for 0.5 > x > epsilon, which may
 | 
						|
// require up to std::numeric_limits<T>::digits+1 terms to be calculated. 
 | 
						|
// It would be much more efficient to use the equivalence:
 | 
						|
//   log(1+x) == (log(1+x) * x) / ((1-x) - 1)
 | 
						|
// Unfortunately many optimizing compilers make such a mess of this, that 
 | 
						|
// it performs no better than log(1+x): which is to say not very well at all.
 | 
						|
//
 | 
						|
template <class T, class Policy>
 | 
						|
T log1p_imp(T const & x, const Policy& pol, const mpl::int_<0>&)
 | 
						|
{ // The function returns the natural logarithm of 1 + x.
 | 
						|
   typedef typename tools::promote_args<T>::type result_type;
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
 | 
						|
   static const char* function = "boost::math::log1p<%1%>(%1%)";
 | 
						|
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<T>(
 | 
						|
         function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<T>(
 | 
						|
         function, 0, pol);
 | 
						|
 | 
						|
   result_type a = abs(result_type(x));
 | 
						|
   if(a > result_type(0.5f))
 | 
						|
      return log(1 + result_type(x));
 | 
						|
   // Note that without numeric_limits specialisation support, 
 | 
						|
   // epsilon just returns zero, and our "optimisation" will always fail:
 | 
						|
   if(a < tools::epsilon<result_type>())
 | 
						|
      return x;
 | 
						|
   detail::log1p_series<result_type> s(x);
 | 
						|
   boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | 
						|
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245)
 | 
						|
   result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter);
 | 
						|
#else
 | 
						|
   result_type zero = 0;
 | 
						|
   result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter, zero);
 | 
						|
#endif
 | 
						|
   policies::check_series_iterations<T>(function, max_iter, pol);
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
template <class T, class Policy>
 | 
						|
T log1p_imp(T const& x, const Policy& pol, const mpl::int_<53>&)
 | 
						|
{ // The function returns the natural logarithm of 1 + x.
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
 | 
						|
   static const char* function = "boost::math::log1p<%1%>(%1%)";
 | 
						|
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<T>(
 | 
						|
         function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<T>(
 | 
						|
         function, 0, pol);
 | 
						|
 | 
						|
   T a = fabs(x);
 | 
						|
   if(a > 0.5f)
 | 
						|
      return log(1 + x);
 | 
						|
   // Note that without numeric_limits specialisation support, 
 | 
						|
   // epsilon just returns zero, and our "optimisation" will always fail:
 | 
						|
   if(a < tools::epsilon<T>())
 | 
						|
      return x;
 | 
						|
 | 
						|
   // Maximum Deviation Found:                     1.846e-017
 | 
						|
   // Expected Error Term:                         1.843e-017
 | 
						|
   // Maximum Relative Change in Control Points:   8.138e-004
 | 
						|
   // Max Error found at double precision =        3.250766e-016
 | 
						|
   static const T P[] = {    
 | 
						|
       0.15141069795941984e-16L,
 | 
						|
       0.35495104378055055e-15L,
 | 
						|
       0.33333333333332835L,
 | 
						|
       0.99249063543365859L,
 | 
						|
       1.1143969784156509L,
 | 
						|
       0.58052937949269651L,
 | 
						|
       0.13703234928513215L,
 | 
						|
       0.011294864812099712L
 | 
						|
     };
 | 
						|
   static const T Q[] = {    
 | 
						|
       1L,
 | 
						|
       3.7274719063011499L,
 | 
						|
       5.5387948649720334L,
 | 
						|
       4.159201143419005L,
 | 
						|
       1.6423855110312755L,
 | 
						|
       0.31706251443180914L,
 | 
						|
       0.022665554431410243L,
 | 
						|
       -0.29252538135177773e-5L
 | 
						|
     };
 | 
						|
 | 
						|
   T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
 | 
						|
   result *= x;
 | 
						|
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
template <class T, class Policy>
 | 
						|
T log1p_imp(T const& x, const Policy& pol, const mpl::int_<64>&)
 | 
						|
{ // The function returns the natural logarithm of 1 + x.
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
 | 
						|
   static const char* function = "boost::math::log1p<%1%>(%1%)";
 | 
						|
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<T>(
 | 
						|
         function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<T>(
 | 
						|
         function, 0, pol);
 | 
						|
 | 
						|
   T a = fabs(x);
 | 
						|
   if(a > 0.5f)
 | 
						|
      return log(1 + x);
 | 
						|
   // Note that without numeric_limits specialisation support, 
 | 
						|
   // epsilon just returns zero, and our "optimisation" will always fail:
 | 
						|
   if(a < tools::epsilon<T>())
 | 
						|
      return x;
 | 
						|
 | 
						|
   // Maximum Deviation Found:                     8.089e-20
 | 
						|
   // Expected Error Term:                         8.088e-20
 | 
						|
   // Maximum Relative Change in Control Points:   9.648e-05
 | 
						|
   // Max Error found at long double precision =   2.242324e-19
 | 
						|
   static const T P[] = {    
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, -0.807533446680736736712e-19),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, -0.490881544804798926426e-18),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 0.333333333333333373941),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 1.17141290782087994162),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 1.62790522814926264694),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 1.13156411870766876113),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 0.408087379932853785336),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 0.0706537026422828914622),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 0.00441709903782239229447)
 | 
						|
   };
 | 
						|
   static const T Q[] = {    
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 4.26423872346263928361),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 7.48189472704477708962),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 6.94757016732904280913),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 3.6493508622280767304),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 1.06884863623790638317),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 0.158292216998514145947),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, 0.00885295524069924328658),
 | 
						|
      BOOST_MATH_BIG_CONSTANT(T, 64, -0.560026216133415663808e-6)
 | 
						|
   };
 | 
						|
 | 
						|
   T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
 | 
						|
   result *= x;
 | 
						|
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
template <class T, class Policy>
 | 
						|
T log1p_imp(T const& x, const Policy& pol, const mpl::int_<24>&)
 | 
						|
{ // The function returns the natural logarithm of 1 + x.
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
 | 
						|
   static const char* function = "boost::math::log1p<%1%>(%1%)";
 | 
						|
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<T>(
 | 
						|
         function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<T>(
 | 
						|
         function, 0, pol);
 | 
						|
 | 
						|
   T a = fabs(x);
 | 
						|
   if(a > 0.5f)
 | 
						|
      return log(1 + x);
 | 
						|
   // Note that without numeric_limits specialisation support, 
 | 
						|
   // epsilon just returns zero, and our "optimisation" will always fail:
 | 
						|
   if(a < tools::epsilon<T>())
 | 
						|
      return x;
 | 
						|
 | 
						|
   // Maximum Deviation Found:                     6.910e-08
 | 
						|
   // Expected Error Term:                         6.910e-08
 | 
						|
   // Maximum Relative Change in Control Points:   2.509e-04
 | 
						|
   // Max Error found at double precision =        6.910422e-08
 | 
						|
   // Max Error found at float precision =         8.357242e-08
 | 
						|
   static const T P[] = {    
 | 
						|
      -0.671192866803148236519e-7L,
 | 
						|
      0.119670999140731844725e-6L,
 | 
						|
      0.333339469182083148598L,
 | 
						|
      0.237827183019664122066L
 | 
						|
   };
 | 
						|
   static const T Q[] = {    
 | 
						|
      1L,
 | 
						|
      1.46348272586988539733L,
 | 
						|
      0.497859871350117338894L,
 | 
						|
      -0.00471666268910169651936L
 | 
						|
   };
 | 
						|
 | 
						|
   T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
 | 
						|
   result *= x;
 | 
						|
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
template <class T, class Policy, class tag>
 | 
						|
struct log1p_initializer
 | 
						|
{
 | 
						|
   struct init
 | 
						|
   {
 | 
						|
      init()
 | 
						|
      {
 | 
						|
         do_init(tag());
 | 
						|
      }
 | 
						|
      template <int N>
 | 
						|
      static void do_init(const mpl::int_<N>&){}
 | 
						|
      static void do_init(const mpl::int_<64>&)
 | 
						|
      {
 | 
						|
         boost::math::log1p(static_cast<T>(0.25), Policy());
 | 
						|
      }
 | 
						|
      void force_instantiate()const{}
 | 
						|
   };
 | 
						|
   static const init initializer;
 | 
						|
   static void force_instantiate()
 | 
						|
   {
 | 
						|
      initializer.force_instantiate();
 | 
						|
   }
 | 
						|
};
 | 
						|
 | 
						|
template <class T, class Policy, class tag>
 | 
						|
const typename log1p_initializer<T, Policy, tag>::init log1p_initializer<T, Policy, tag>::initializer;
 | 
						|
 | 
						|
 | 
						|
} // namespace detail
 | 
						|
 | 
						|
template <class T, class Policy>
 | 
						|
inline typename tools::promote_args<T>::type log1p(T x, const Policy&)
 | 
						|
{ 
 | 
						|
   typedef typename tools::promote_args<T>::type result_type;
 | 
						|
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | 
						|
   typedef typename policies::precision<result_type, Policy>::type precision_type;
 | 
						|
   typedef typename policies::normalise<
 | 
						|
      Policy, 
 | 
						|
      policies::promote_float<false>, 
 | 
						|
      policies::promote_double<false>, 
 | 
						|
      policies::discrete_quantile<>,
 | 
						|
      policies::assert_undefined<> >::type forwarding_policy;
 | 
						|
 | 
						|
   typedef typename mpl::if_<
 | 
						|
      mpl::less_equal<precision_type, mpl::int_<0> >,
 | 
						|
      mpl::int_<0>,
 | 
						|
      typename mpl::if_<
 | 
						|
         mpl::less_equal<precision_type, mpl::int_<53> >,
 | 
						|
         mpl::int_<53>,  // double
 | 
						|
         typename mpl::if_<
 | 
						|
            mpl::less_equal<precision_type, mpl::int_<64> >,
 | 
						|
            mpl::int_<64>, // 80-bit long double
 | 
						|
            mpl::int_<0> // too many bits, use generic version.
 | 
						|
         >::type
 | 
						|
      >::type
 | 
						|
   >::type tag_type;
 | 
						|
 | 
						|
   detail::log1p_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
 | 
						|
 | 
						|
   return policies::checked_narrowing_cast<result_type, forwarding_policy>(
 | 
						|
      detail::log1p_imp(static_cast<value_type>(x), forwarding_policy(), tag_type()), "boost::math::log1p<%1%>(%1%)");
 | 
						|
}
 | 
						|
 | 
						|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
 | 
						|
// These overloads work around a type deduction bug:
 | 
						|
inline float log1p(float z)
 | 
						|
{
 | 
						|
   return log1p<float>(z);
 | 
						|
}
 | 
						|
inline double log1p(double z)
 | 
						|
{
 | 
						|
   return log1p<double>(z);
 | 
						|
}
 | 
						|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | 
						|
inline long double log1p(long double z)
 | 
						|
{
 | 
						|
   return log1p<long double>(z);
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef log1p
 | 
						|
#  ifndef BOOST_HAS_LOG1P
 | 
						|
#     define BOOST_HAS_LOG1P
 | 
						|
#  endif
 | 
						|
#  undef log1p
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(BOOST_HAS_LOG1P) && !(defined(__osf__) && defined(__DECCXX_VER))
 | 
						|
#  ifdef BOOST_MATH_USE_C99
 | 
						|
template <class Policy>
 | 
						|
inline float log1p(float x, const Policy& pol)
 | 
						|
{ 
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<float>(
 | 
						|
         "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<float>(
 | 
						|
         "log1p<%1%>(%1%)", 0, pol);
 | 
						|
   return ::log1pf(x); 
 | 
						|
}
 | 
						|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | 
						|
template <class Policy>
 | 
						|
inline long double log1p(long double x, const Policy& pol)
 | 
						|
{ 
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<long double>(
 | 
						|
         "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<long double>(
 | 
						|
         "log1p<%1%>(%1%)", 0, pol);
 | 
						|
   return ::log1pl(x); 
 | 
						|
}
 | 
						|
#endif
 | 
						|
#else
 | 
						|
template <class Policy>
 | 
						|
inline float log1p(float x, const Policy& pol)
 | 
						|
{ 
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<float>(
 | 
						|
         "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<float>(
 | 
						|
         "log1p<%1%>(%1%)", 0, pol);
 | 
						|
   return ::log1p(x); 
 | 
						|
}
 | 
						|
#endif
 | 
						|
template <class Policy>
 | 
						|
inline double log1p(double x, const Policy& pol)
 | 
						|
{ 
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<double>(
 | 
						|
         "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<double>(
 | 
						|
         "log1p<%1%>(%1%)", 0, pol);
 | 
						|
   return ::log1p(x); 
 | 
						|
}
 | 
						|
#elif defined(_MSC_VER) && (BOOST_MSVC >= 1400)
 | 
						|
//
 | 
						|
// You should only enable this branch if you are absolutely sure
 | 
						|
// that your compilers optimizer won't mess this code up!!
 | 
						|
// Currently tested with VC8 and Intel 9.1.
 | 
						|
//
 | 
						|
template <class Policy>
 | 
						|
inline double log1p(double x, const Policy& pol)
 | 
						|
{
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<double>(
 | 
						|
         "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<double>(
 | 
						|
         "log1p<%1%>(%1%)", 0, pol);
 | 
						|
   double u = 1+x;
 | 
						|
   if(u == 1.0) 
 | 
						|
      return x; 
 | 
						|
   else
 | 
						|
      return ::log(u)*(x/(u-1.0));
 | 
						|
}
 | 
						|
template <class Policy>
 | 
						|
inline float log1p(float x, const Policy& pol)
 | 
						|
{
 | 
						|
   return static_cast<float>(boost::math::log1p(static_cast<double>(x), pol));
 | 
						|
}
 | 
						|
#ifndef _WIN32_WCE
 | 
						|
//
 | 
						|
// For some reason this fails to compile under WinCE...
 | 
						|
// Needs more investigation.
 | 
						|
//
 | 
						|
template <class Policy>
 | 
						|
inline long double log1p(long double x, const Policy& pol)
 | 
						|
{
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<long double>(
 | 
						|
         "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<long double>(
 | 
						|
         "log1p<%1%>(%1%)", 0, pol);
 | 
						|
   long double u = 1+x;
 | 
						|
   if(u == 1.0) 
 | 
						|
      return x; 
 | 
						|
   else
 | 
						|
      return ::logl(u)*(x/(u-1.0));
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
template <class T>
 | 
						|
inline typename tools::promote_args<T>::type log1p(T x)
 | 
						|
{
 | 
						|
   return boost::math::log1p(x, policies::policy<>());
 | 
						|
}
 | 
						|
//
 | 
						|
// Compute log(1+x)-x:
 | 
						|
//
 | 
						|
template <class T, class Policy>
 | 
						|
inline typename tools::promote_args<T>::type 
 | 
						|
   log1pmx(T x, const Policy& pol)
 | 
						|
{
 | 
						|
   typedef typename tools::promote_args<T>::type result_type;
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   static const char* function = "boost::math::log1pmx<%1%>(%1%)";
 | 
						|
 | 
						|
   if(x < -1)
 | 
						|
      return policies::raise_domain_error<T>(
 | 
						|
         function, "log1pmx(x) requires x > -1, but got x = %1%.", x, pol);
 | 
						|
   if(x == -1)
 | 
						|
      return -policies::raise_overflow_error<T>(
 | 
						|
         function, 0, pol);
 | 
						|
 | 
						|
   result_type a = abs(result_type(x));
 | 
						|
   if(a > result_type(0.95f))
 | 
						|
      return log(1 + result_type(x)) - result_type(x);
 | 
						|
   // Note that without numeric_limits specialisation support, 
 | 
						|
   // epsilon just returns zero, and our "optimisation" will always fail:
 | 
						|
   if(a < tools::epsilon<result_type>())
 | 
						|
      return -x * x / 2;
 | 
						|
   boost::math::detail::log1p_series<T> s(x);
 | 
						|
   s();
 | 
						|
   boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | 
						|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
 | 
						|
   T zero = 0;
 | 
						|
   T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero);
 | 
						|
#else
 | 
						|
   T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter);
 | 
						|
#endif
 | 
						|
   policies::check_series_iterations<T>(function, max_iter, pol);
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
inline typename tools::promote_args<T>::type log1pmx(T x)
 | 
						|
{
 | 
						|
   return log1pmx(x, policies::policy<>());
 | 
						|
}
 | 
						|
 | 
						|
} // namespace math
 | 
						|
} // namespace boost
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#pragma warning(pop)
 | 
						|
#endif
 | 
						|
 | 
						|
#endif // BOOST_MATH_LOG1P_INCLUDED
 | 
						|
 | 
						|
 | 
						|
 |