489 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			489 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
// Copyright 2008 Gautam Sewani
 | 
						|
// Copyright 2008 John Maddock
 | 
						|
//
 | 
						|
// Use, modification and distribution are subject to the
 | 
						|
// Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt
 | 
						|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
 | 
						|
#define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
 | 
						|
 | 
						|
#include <boost/math/constants/constants.hpp>
 | 
						|
#include <boost/math/special_functions/lanczos.hpp>
 | 
						|
#include <boost/math/special_functions/gamma.hpp>
 | 
						|
#include <boost/math/special_functions/pow.hpp>
 | 
						|
#include <boost/math/special_functions/prime.hpp>
 | 
						|
#include <boost/math/policies/error_handling.hpp>
 | 
						|
 | 
						|
#ifdef BOOST_MATH_INSTRUMENT
 | 
						|
#include <typeinfo>
 | 
						|
#endif
 | 
						|
 | 
						|
namespace boost{ namespace math{ namespace detail{
 | 
						|
 | 
						|
template <class T, class Func>
 | 
						|
void bubble_down_one(T* first, T* last, Func f)
 | 
						|
{
 | 
						|
   using std::swap;
 | 
						|
   T* next = first;
 | 
						|
   ++next;
 | 
						|
   while((next != last) && (!f(*first, *next)))
 | 
						|
   {
 | 
						|
      swap(*first, *next);
 | 
						|
      ++first;
 | 
						|
      ++next;
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
struct sort_functor
 | 
						|
{
 | 
						|
   sort_functor(const T* exponents) : m_exponents(exponents){}
 | 
						|
   bool operator()(int i, int j)
 | 
						|
   {
 | 
						|
      return m_exponents[i] > m_exponents[j];
 | 
						|
   }
 | 
						|
private:
 | 
						|
   const T* m_exponents;
 | 
						|
};
 | 
						|
 | 
						|
template <class T, class Lanczos, class Policy>
 | 
						|
T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const Lanczos&, const Policy&)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
 | 
						|
   BOOST_MATH_INSTRUMENT_FPU
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(x);
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(r);
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(n);
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(N);
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(typeid(Lanczos).name());
 | 
						|
 | 
						|
   T bases[9] = {
 | 
						|
      T(n) + static_cast<T>(Lanczos::g()) + 0.5f,
 | 
						|
      T(r) + static_cast<T>(Lanczos::g()) + 0.5f,
 | 
						|
      T(N - n) + static_cast<T>(Lanczos::g()) + 0.5f,
 | 
						|
      T(N - r) + static_cast<T>(Lanczos::g()) + 0.5f,
 | 
						|
      1 / (T(N) + static_cast<T>(Lanczos::g()) + 0.5f),
 | 
						|
      1 / (T(x) + static_cast<T>(Lanczos::g()) + 0.5f),
 | 
						|
      1 / (T(n - x) + static_cast<T>(Lanczos::g()) + 0.5f),
 | 
						|
      1 / (T(r - x) + static_cast<T>(Lanczos::g()) + 0.5f),
 | 
						|
      1 / (T(N - n - r + x) + static_cast<T>(Lanczos::g()) + 0.5f)
 | 
						|
   };
 | 
						|
   T exponents[9] = {
 | 
						|
      n + T(0.5f),
 | 
						|
      r + T(0.5f),
 | 
						|
      N - n + T(0.5f),
 | 
						|
      N - r + T(0.5f),
 | 
						|
      N + T(0.5f),
 | 
						|
      x + T(0.5f),
 | 
						|
      n - x + T(0.5f),
 | 
						|
      r - x + T(0.5f),
 | 
						|
      N - n - r + x + T(0.5f)
 | 
						|
   };
 | 
						|
   int base_e_factors[9] = {
 | 
						|
      -1, -1, -1, -1, 1, 1, 1, 1, 1
 | 
						|
   };
 | 
						|
   int sorted_indexes[9] = {
 | 
						|
      0, 1, 2, 3, 4, 5, 6, 7, 8
 | 
						|
   };
 | 
						|
#ifdef BOOST_MATH_INSTRUMENT
 | 
						|
   BOOST_MATH_INSTRUMENT_FPU
 | 
						|
   for(unsigned i = 0; i < 9; ++i)
 | 
						|
   {
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | 
						|
   }
 | 
						|
#endif
 | 
						|
   std::sort(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
 | 
						|
#ifdef BOOST_MATH_INSTRUMENT
 | 
						|
   BOOST_MATH_INSTRUMENT_FPU
 | 
						|
   for(unsigned i = 0; i < 9; ++i)
 | 
						|
   {
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
   do{
 | 
						|
      exponents[sorted_indexes[0]] -= exponents[sorted_indexes[1]];
 | 
						|
      bases[sorted_indexes[1]] *= bases[sorted_indexes[0]];
 | 
						|
      if((bases[sorted_indexes[1]] < tools::min_value<T>()) && (exponents[sorted_indexes[1]] != 0))
 | 
						|
      {
 | 
						|
         return 0;
 | 
						|
      }
 | 
						|
      base_e_factors[sorted_indexes[1]] += base_e_factors[sorted_indexes[0]];
 | 
						|
      bubble_down_one(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
 | 
						|
 | 
						|
#ifdef BOOST_MATH_INSTRUMENT
 | 
						|
      for(unsigned i = 0; i < 9; ++i)
 | 
						|
      {
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | 
						|
      }
 | 
						|
#endif
 | 
						|
   }while(exponents[sorted_indexes[1]] > 1);
 | 
						|
 | 
						|
   //
 | 
						|
   // Combine equal powers:
 | 
						|
   //
 | 
						|
   int j = 8;
 | 
						|
   while(exponents[sorted_indexes[j]] == 0) --j;
 | 
						|
   while(j)
 | 
						|
   {
 | 
						|
      while(j && (exponents[sorted_indexes[j-1]] == exponents[sorted_indexes[j]]))
 | 
						|
      {
 | 
						|
         bases[sorted_indexes[j-1]] *= bases[sorted_indexes[j]];
 | 
						|
         exponents[sorted_indexes[j]] = 0;
 | 
						|
         base_e_factors[sorted_indexes[j-1]] += base_e_factors[sorted_indexes[j]];
 | 
						|
         bubble_down_one(sorted_indexes + j, sorted_indexes + 9, sort_functor<T>(exponents));
 | 
						|
         --j;
 | 
						|
      }
 | 
						|
      --j;
 | 
						|
 | 
						|
#ifdef BOOST_MATH_INSTRUMENT
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(j);
 | 
						|
      for(unsigned i = 0; i < 9; ++i)
 | 
						|
      {
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | 
						|
         BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | 
						|
      }
 | 
						|
#endif
 | 
						|
   }
 | 
						|
 | 
						|
#ifdef BOOST_MATH_INSTRUMENT
 | 
						|
   BOOST_MATH_INSTRUMENT_FPU
 | 
						|
   for(unsigned i = 0; i < 9; ++i)
 | 
						|
   {
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
   T result;
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])));
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(exponents[sorted_indexes[0]]);
 | 
						|
   {
 | 
						|
      BOOST_FPU_EXCEPTION_GUARD
 | 
						|
      result = pow(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])), exponents[sorted_indexes[0]]);
 | 
						|
   }
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | 
						|
   for(unsigned i = 1; (i < 9) && (exponents[sorted_indexes[i]] > 0); ++i)
 | 
						|
   {
 | 
						|
      BOOST_FPU_EXCEPTION_GUARD
 | 
						|
      if(result < tools::min_value<T>())
 | 
						|
         return 0; // short circuit further evaluation
 | 
						|
      if(exponents[sorted_indexes[i]] == 1)
 | 
						|
         result *= bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]]));
 | 
						|
      else if(exponents[sorted_indexes[i]] == 0.5f)
 | 
						|
         result *= sqrt(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])));
 | 
						|
      else
 | 
						|
         result *= pow(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])), exponents[sorted_indexes[i]]);
 | 
						|
   
 | 
						|
      BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | 
						|
   }
 | 
						|
 | 
						|
   result *= Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n + 1))
 | 
						|
      * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r + 1))
 | 
						|
      * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n + 1))
 | 
						|
      * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - r + 1))
 | 
						|
      / 
 | 
						|
      ( Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N + 1))
 | 
						|
         * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(x + 1))
 | 
						|
         * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n - x + 1))
 | 
						|
         * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r - x + 1))
 | 
						|
         * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n - r + x + 1)));
 | 
						|
   
 | 
						|
   BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
template <class T, class Policy>
 | 
						|
T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const boost::math::lanczos::undefined_lanczos&, const Policy& pol)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   return exp(
 | 
						|
      boost::math::lgamma(T(n + 1), pol)
 | 
						|
      + boost::math::lgamma(T(r + 1), pol)
 | 
						|
      + boost::math::lgamma(T(N - n + 1), pol)
 | 
						|
      + boost::math::lgamma(T(N - r + 1), pol)
 | 
						|
      - boost::math::lgamma(T(N + 1), pol)
 | 
						|
      - boost::math::lgamma(T(x + 1), pol)
 | 
						|
      - boost::math::lgamma(T(n - x + 1), pol)
 | 
						|
      - boost::math::lgamma(T(r - x + 1), pol)
 | 
						|
      - boost::math::lgamma(T(N - n - r + x + 1), pol));
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
inline T integer_power(const T& x, int ex)
 | 
						|
{
 | 
						|
   if(ex < 0)
 | 
						|
      return 1 / integer_power(x, -ex);
 | 
						|
   switch(ex)
 | 
						|
   {
 | 
						|
   case 0:
 | 
						|
      return 1;
 | 
						|
   case 1:
 | 
						|
      return x;
 | 
						|
   case 2:
 | 
						|
      return x * x;
 | 
						|
   case 3:
 | 
						|
      return x * x * x;
 | 
						|
   case 4:
 | 
						|
      return boost::math::pow<4>(x);
 | 
						|
   case 5:
 | 
						|
      return boost::math::pow<5>(x);
 | 
						|
   case 6:
 | 
						|
      return boost::math::pow<6>(x);
 | 
						|
   case 7:
 | 
						|
      return boost::math::pow<7>(x);
 | 
						|
   case 8:
 | 
						|
      return boost::math::pow<8>(x);
 | 
						|
   }
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
#ifdef __SUNPRO_CC
 | 
						|
   return pow(x, T(ex));
 | 
						|
#else
 | 
						|
   return pow(x, ex);
 | 
						|
#endif
 | 
						|
}
 | 
						|
template <class T>
 | 
						|
struct hypergeometric_pdf_prime_loop_result_entry
 | 
						|
{
 | 
						|
   T value;
 | 
						|
   const hypergeometric_pdf_prime_loop_result_entry* next;
 | 
						|
};
 | 
						|
 | 
						|
#ifdef BOOST_MSVC
 | 
						|
#pragma warning(push)
 | 
						|
#pragma warning(disable:4510 4512 4610)
 | 
						|
#endif
 | 
						|
 | 
						|
struct hypergeometric_pdf_prime_loop_data
 | 
						|
{
 | 
						|
   const unsigned x;
 | 
						|
   const unsigned r;
 | 
						|
   const unsigned n;
 | 
						|
   const unsigned N;
 | 
						|
   unsigned prime_index;
 | 
						|
   unsigned current_prime;
 | 
						|
};
 | 
						|
 | 
						|
#ifdef BOOST_MSVC
 | 
						|
#pragma warning(pop)
 | 
						|
#endif
 | 
						|
 | 
						|
template <class T>
 | 
						|
T hypergeometric_pdf_prime_loop_imp(hypergeometric_pdf_prime_loop_data& data, hypergeometric_pdf_prime_loop_result_entry<T>& result)
 | 
						|
{
 | 
						|
   while(data.current_prime <= data.N)
 | 
						|
   {
 | 
						|
      unsigned base = data.current_prime;
 | 
						|
      int prime_powers = 0;
 | 
						|
      while(base <= data.N)
 | 
						|
      {
 | 
						|
         prime_powers += data.n / base;
 | 
						|
         prime_powers += data.r / base;
 | 
						|
         prime_powers += (data.N - data.n) / base;
 | 
						|
         prime_powers += (data.N - data.r) / base;
 | 
						|
         prime_powers -= data.N / base;
 | 
						|
         prime_powers -= data.x / base;
 | 
						|
         prime_powers -= (data.n - data.x) / base;
 | 
						|
         prime_powers -= (data.r - data.x) / base;
 | 
						|
         prime_powers -= (data.N - data.n - data.r + data.x) / base;
 | 
						|
         base *= data.current_prime;
 | 
						|
      }
 | 
						|
      if(prime_powers)
 | 
						|
      {
 | 
						|
         T p = integer_power<T>(static_cast<T>(data.current_prime), prime_powers);
 | 
						|
         if((p > 1) && (tools::max_value<T>() / p < result.value))
 | 
						|
         {
 | 
						|
            //
 | 
						|
            // The next calculation would overflow, use recursion
 | 
						|
            // to sidestep the issue:
 | 
						|
            //
 | 
						|
            hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
 | 
						|
            data.current_prime = prime(++data.prime_index);
 | 
						|
            return hypergeometric_pdf_prime_loop_imp<T>(data, t);
 | 
						|
         }
 | 
						|
         if((p < 1) && (tools::min_value<T>() / p > result.value))
 | 
						|
         {
 | 
						|
            //
 | 
						|
            // The next calculation would underflow, use recursion
 | 
						|
            // to sidestep the issue:
 | 
						|
            //
 | 
						|
            hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
 | 
						|
            data.current_prime = prime(++data.prime_index);
 | 
						|
            return hypergeometric_pdf_prime_loop_imp<T>(data, t);
 | 
						|
         }
 | 
						|
         result.value *= p;
 | 
						|
      }
 | 
						|
      data.current_prime = prime(++data.prime_index);
 | 
						|
   }
 | 
						|
   //
 | 
						|
   // When we get to here we have run out of prime factors,
 | 
						|
   // the overall result is the product of all the partial
 | 
						|
   // results we have accumulated on the stack so far, these
 | 
						|
   // are in a linked list starting with "data.head" and ending
 | 
						|
   // with "result".
 | 
						|
   //
 | 
						|
   // All that remains is to multiply them together, taking
 | 
						|
   // care not to overflow or underflow.
 | 
						|
   //
 | 
						|
   // Enumerate partial results >= 1 in variable i
 | 
						|
   // and partial results < 1 in variable j:
 | 
						|
   //
 | 
						|
   hypergeometric_pdf_prime_loop_result_entry<T> const *i, *j;
 | 
						|
   i = &result;
 | 
						|
   while(i && i->value < 1)
 | 
						|
      i = i->next;
 | 
						|
   j = &result;
 | 
						|
   while(j && j->value >= 1)
 | 
						|
      j = j->next;
 | 
						|
 | 
						|
   T prod = 1;
 | 
						|
 | 
						|
   while(i || j)
 | 
						|
   {
 | 
						|
      while(i && ((prod <= 1) || (j == 0)))
 | 
						|
      {
 | 
						|
         prod *= i->value;
 | 
						|
         i = i->next;
 | 
						|
         while(i && i->value < 1)
 | 
						|
            i = i->next;
 | 
						|
      }
 | 
						|
      while(j && ((prod >= 1) || (i == 0)))
 | 
						|
      {
 | 
						|
         prod *= j->value;
 | 
						|
         j = j->next;
 | 
						|
         while(j && j->value >= 1)
 | 
						|
            j = j->next;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   return prod;
 | 
						|
}
 | 
						|
 | 
						|
template <class T, class Policy>
 | 
						|
inline T hypergeometric_pdf_prime_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
 | 
						|
{
 | 
						|
   hypergeometric_pdf_prime_loop_result_entry<T> result = { 1, 0 };
 | 
						|
   hypergeometric_pdf_prime_loop_data data = { x, r, n, N, 0, prime(0) };
 | 
						|
   return hypergeometric_pdf_prime_loop_imp<T>(data, result);
 | 
						|
}
 | 
						|
 | 
						|
template <class T, class Policy>
 | 
						|
T hypergeometric_pdf_factorial_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING
 | 
						|
   BOOST_ASSERT(N <= boost::math::max_factorial<T>::value);
 | 
						|
   T result = boost::math::unchecked_factorial<T>(n);
 | 
						|
   T num[3] = {
 | 
						|
      boost::math::unchecked_factorial<T>(r),
 | 
						|
      boost::math::unchecked_factorial<T>(N - n),
 | 
						|
      boost::math::unchecked_factorial<T>(N - r)
 | 
						|
   };
 | 
						|
   T denom[5] = {
 | 
						|
      boost::math::unchecked_factorial<T>(N),
 | 
						|
      boost::math::unchecked_factorial<T>(x),
 | 
						|
      boost::math::unchecked_factorial<T>(n - x),
 | 
						|
      boost::math::unchecked_factorial<T>(r - x),
 | 
						|
      boost::math::unchecked_factorial<T>(N - n - r + x)
 | 
						|
   };
 | 
						|
   int i = 0;
 | 
						|
   int j = 0;
 | 
						|
   while((i < 3) || (j < 5))
 | 
						|
   {
 | 
						|
      while((j < 5) && ((result >= 1) || (i >= 3)))
 | 
						|
      {
 | 
						|
         result /= denom[j];
 | 
						|
         ++j;
 | 
						|
      }
 | 
						|
      while((i < 3) && ((result <= 1) || (j >= 5)))
 | 
						|
      {
 | 
						|
         result *= num[i];
 | 
						|
         ++i;
 | 
						|
      }
 | 
						|
   }
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T, class Policy>
 | 
						|
inline typename tools::promote_args<T>::type 
 | 
						|
   hypergeometric_pdf(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
 | 
						|
{
 | 
						|
   BOOST_FPU_EXCEPTION_GUARD
 | 
						|
   typedef typename tools::promote_args<T>::type result_type;
 | 
						|
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | 
						|
   typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
 | 
						|
   typedef typename policies::normalise<
 | 
						|
      Policy, 
 | 
						|
      policies::promote_float<false>, 
 | 
						|
      policies::promote_double<false>, 
 | 
						|
      policies::discrete_quantile<>,
 | 
						|
      policies::assert_undefined<> >::type forwarding_policy;
 | 
						|
 | 
						|
   value_type result;
 | 
						|
   if(N <= boost::math::max_factorial<value_type>::value)
 | 
						|
   {
 | 
						|
      //
 | 
						|
      // If N is small enough then we can evaluate the PDF via the factorials
 | 
						|
      // directly: table lookup of the factorials gives the best performance
 | 
						|
      // of the methods available:
 | 
						|
      //
 | 
						|
      result = detail::hypergeometric_pdf_factorial_imp<value_type>(x, r, n, N, forwarding_policy());
 | 
						|
   }
 | 
						|
   else if(N <= boost::math::prime(boost::math::max_prime - 1))
 | 
						|
   {
 | 
						|
      //
 | 
						|
      // If N is no larger than the largest prime number in our lookup table
 | 
						|
      // (104729) then we can use prime factorisation to evaluate the PDF,
 | 
						|
      // this is slow but accurate:
 | 
						|
      //
 | 
						|
      result = detail::hypergeometric_pdf_prime_imp<value_type>(x, r, n, N, forwarding_policy());
 | 
						|
   }
 | 
						|
   else
 | 
						|
   {
 | 
						|
      //
 | 
						|
      // Catch all case - use the lanczos approximation - where available - 
 | 
						|
      // to evaluate the ratio of factorials.  This is reasonably fast
 | 
						|
      // (almost as quick as using logarithmic evaluation in terms of lgamma)
 | 
						|
      // but only a few digits better in accuracy than using lgamma:
 | 
						|
      //
 | 
						|
      result = detail::hypergeometric_pdf_lanczos_imp(value_type(), x, r, n, N, evaluation_type(), forwarding_policy());
 | 
						|
   }
 | 
						|
 | 
						|
   if(result > 1)
 | 
						|
   {
 | 
						|
      result = 1;
 | 
						|
   }
 | 
						|
   if(result < 0)
 | 
						|
   {
 | 
						|
      result = 0;
 | 
						|
   }
 | 
						|
 | 
						|
   return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_pdf<%1%>(%1%,%1%,%1%,%1%)");
 | 
						|
}
 | 
						|
 | 
						|
}}} // namespaces
 | 
						|
 | 
						|
#endif
 | 
						|
 |