214 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			214 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
/*
 | 
						|
 ftrsd2.c
 | 
						|
 
 | 
						|
 A soft-decision decoder for the JT65 (63,12) Reed-Solomon code.
 | 
						|
 
 | 
						|
 This decoding scheme is built around Phil Karn's Berlekamp-Massey
 | 
						|
 errors and erasures decoder. The approach is inspired by a number of
 | 
						|
 publications, including the stochastic Chase decoder described
 | 
						|
 in "Stochastic Chase Decoding of Reed-Solomon Codes", by Leroux et al.,
 | 
						|
 IEEE Communications Letters, Vol. 14, No. 9, September 2010 and
 | 
						|
 "Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error-
 | 
						|
 and-Erasure Decoding," by Soo-Woong Lee and B. V. K. Vijaya Kumar.
 | 
						|
 
 | 
						|
 Steve Franke K9AN and Joe Taylor K1JT
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <unistd.h>
 | 
						|
#include <time.h>
 | 
						|
#include <string.h>
 | 
						|
#include "rs2.h"
 | 
						|
 | 
						|
static void *rs;
 | 
						|
void getpp_(int workdat[], float *pp);
 | 
						|
 | 
						|
void ftrsd2_(int mrsym[], int mrprob[], int mr2sym[], int mr2prob[], 
 | 
						|
	     int* ntrials0, int correct[], int param[], int ntry[])
 | 
						|
{
 | 
						|
  int rxdat[63], rxprob[63], rxdat2[63], rxprob2[63];
 | 
						|
  int workdat[63];
 | 
						|
  int indexes[63];
 | 
						|
  int era_pos[51];
 | 
						|
  int i, j, numera, nerr, nn=63;
 | 
						|
  int ntrials = *ntrials0;
 | 
						|
  int nhard=0,nhard_min=32768,nsoft=0,nsoft_min=32768;
 | 
						|
  int ntotal=0,ntotal_min=32768,ncandidates;
 | 
						|
  int nera_best=0;
 | 
						|
  float pp,pp1,pp2;
 | 
						|
  static unsigned int nseed;
 | 
						|
  
 | 
						|
// Power-percentage symbol metrics - composite gnnf/hf 
 | 
						|
  int perr[8][8] = {
 | 
						|
    { 4,      9,     11,     13,     14,     14,     15,     15},
 | 
						|
    { 2,     20,     20,     30,     40,     50,     50,     50},
 | 
						|
    { 7,     24,     27,     40,     50,     50,     50,     50},
 | 
						|
    {13,     25,     35,     46,     52,     70,     50,     50},
 | 
						|
    {17,     30,     42,     54,     55,     64,     71,     70},
 | 
						|
    {25,     39,     48,     57,     64,     66,     77,     77},
 | 
						|
    {32,     45,     54,     63,     66,     75,     78,     83},
 | 
						|
    {51,     58,     57,     66,     72,     77,     82,     86}};
 | 
						|
 | 
						|
    
 | 
						|
// Initialize the KA9Q Reed-Solomon encoder/decoder
 | 
						|
  unsigned int symsize=6, gfpoly=0x43, fcr=3, prim=1, nroots=51;
 | 
						|
  rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 0);
 | 
						|
 | 
						|
// Reverse the received symbol vectors for BM decoder
 | 
						|
  for (i=0; i<63; i++) {
 | 
						|
    rxdat[i]=mrsym[62-i];
 | 
						|
    rxprob[i]=mrprob[62-i];
 | 
						|
    rxdat2[i]=mr2sym[62-i];
 | 
						|
    rxprob2[i]=mr2prob[62-i];
 | 
						|
  }
 | 
						|
    
 | 
						|
// Sort rxprob to find indexes of the least reliable symbols
 | 
						|
  int k, pass, tmp, nsym=63;
 | 
						|
  int probs[63];
 | 
						|
  for (i=0; i<63; i++) {
 | 
						|
    indexes[i]=i;
 | 
						|
    probs[i]=rxprob[i];
 | 
						|
  }
 | 
						|
  for (pass = 1; pass <= nsym-1; pass++) {
 | 
						|
    for (k = 0; k < nsym - pass; k++) {
 | 
						|
      if( probs[k] < probs[k+1] ) {
 | 
						|
        tmp = probs[k];
 | 
						|
        probs[k] = probs[k+1];
 | 
						|
        probs[k+1] = tmp;
 | 
						|
        tmp = indexes[k];
 | 
						|
        indexes[k] = indexes[k+1];
 | 
						|
        indexes[k+1] = tmp;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
// See if we can decode using BM HDD, and calculate the syndrome vector.
 | 
						|
  memset(era_pos,0,51*sizeof(int));
 | 
						|
  numera=0;
 | 
						|
  memcpy(workdat,rxdat,sizeof(rxdat));
 | 
						|
  nerr=decode_rs_int(rs,workdat,era_pos,numera,1);
 | 
						|
  if( nerr >= 0 ) {
 | 
						|
    // Hard-decision decoding succeeded.  Save codeword and some parameters.
 | 
						|
    nhard=0;
 | 
						|
    for (i=0; i<63; i++) {
 | 
						|
      if( workdat[i] != rxdat[i] ) nhard=nhard+1;
 | 
						|
    }
 | 
						|
    memcpy(correct,workdat,63*sizeof(int));
 | 
						|
    param[0]=0;
 | 
						|
    param[1]=nhard;
 | 
						|
    param[2]=0;
 | 
						|
    param[3]=0;
 | 
						|
    param[4]=0;
 | 
						|
    param[5]=0;
 | 
						|
    param[7]=1000*1000;
 | 
						|
    ntry[0]=0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
/*
 | 
						|
Hard-decision decoding failed.  Try the FT soft-decision method.
 | 
						|
Generate random erasure-locator vectors and see if any of them
 | 
						|
decode. This will generate a list of "candidate" codewords.  The
 | 
						|
soft distance between each candidate codeword and the received 
 | 
						|
word is estimated by finding the largest (pp1) and second-largest 
 | 
						|
(pp2) outputs from a synchronized filter-bank operating on the 
 | 
						|
symbol spectra, and using these to decide which candidate 
 | 
						|
codeword is "best".
 | 
						|
*/
 | 
						|
 | 
						|
  nseed=1;                                 //Seed for random numbers
 | 
						|
  float ratio;
 | 
						|
  int thresh, nsum;
 | 
						|
  int thresh0[63];
 | 
						|
  ncandidates=0;
 | 
						|
  nsum=0;
 | 
						|
  int ii,jj;
 | 
						|
  for (i=0; i<nn; i++) {
 | 
						|
    nsum=nsum+rxprob[i];
 | 
						|
    j = indexes[62-i];
 | 
						|
    ratio = (float)rxprob2[j]/((float)rxprob[j]+0.01);
 | 
						|
    ii = 7.999*ratio;
 | 
						|
    jj = (62-i)/8;
 | 
						|
    thresh0[i] = 1.3*perr[ii][jj];
 | 
						|
  }
 | 
						|
  if(nsum<=0) return;
 | 
						|
 | 
						|
  pp1=0.0;
 | 
						|
  pp2=0.0;
 | 
						|
  for (k=1; k<=ntrials; k++) {
 | 
						|
    memset(era_pos,0,51*sizeof(int));
 | 
						|
    memcpy(workdat,rxdat,sizeof(rxdat));
 | 
						|
 | 
						|
/* 
 | 
						|
Mark a subset of the symbols as erasures.
 | 
						|
Run through the ranked symbols, starting with the worst, i=0.
 | 
						|
NB: j is the symbol-vector index of the symbol with rank i.
 | 
						|
*/
 | 
						|
    numera=0;
 | 
						|
    for (i=0; i<nn; i++) {
 | 
						|
      j = indexes[62-i];
 | 
						|
      thresh=thresh0[i];
 | 
						|
      long int ir;
 | 
						|
 | 
						|
// Generate a random number ir, 0 <= ir < 100 (see POSIX.1-2001 example).
 | 
						|
      nseed = nseed * 1103515245 + 12345;
 | 
						|
      ir = (unsigned)(nseed/65536) % 32768;
 | 
						|
      ir = (100*ir)/32768;
 | 
						|
 | 
						|
      if((ir < thresh ) && numera < 51) {
 | 
						|
        era_pos[numera]=j;
 | 
						|
        numera=numera+1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    nerr=decode_rs_int(rs,workdat,era_pos,numera,0);        
 | 
						|
    if( nerr >= 0 ) {
 | 
						|
      // We have a candidate codeword.  Find its hard and soft distance from
 | 
						|
      // the received word.  Also find pp1 and pp2 from the full array 
 | 
						|
      // s3(64,63) of synchronized symbol spectra.
 | 
						|
      ncandidates=ncandidates+1;
 | 
						|
      nhard=0;
 | 
						|
      nsoft=0;
 | 
						|
      for (i=0; i<63; i++) {
 | 
						|
        if(workdat[i] != rxdat[i]) {
 | 
						|
          nhard=nhard+1;
 | 
						|
          if(workdat[i] != rxdat2[i]) {
 | 
						|
            nsoft=nsoft+rxprob[i];
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      nsoft=63*nsoft/nsum;
 | 
						|
      ntotal=nsoft+nhard;
 | 
						|
 | 
						|
      getpp_(workdat,&pp);
 | 
						|
      if(pp>pp1) {
 | 
						|
        pp2=pp1;
 | 
						|
        pp1=pp;
 | 
						|
        nsoft_min=nsoft;
 | 
						|
        nhard_min=nhard;
 | 
						|
        ntotal_min=ntotal;
 | 
						|
        memcpy(correct,workdat,63*sizeof(int));
 | 
						|
        nera_best=numera;
 | 
						|
        ntry[0]=k;
 | 
						|
      } else {
 | 
						|
        if(pp>pp2 && pp!=pp1) pp2=pp;
 | 
						|
      }
 | 
						|
      if(nhard_min <= 41 && ntotal_min <= 71) break;
 | 
						|
    }
 | 
						|
    if(k == ntrials) ntry[0]=k;
 | 
						|
  }
 | 
						|
  
 | 
						|
  param[0]=ncandidates;
 | 
						|
  param[1]=nhard_min;
 | 
						|
  param[2]=nsoft_min;
 | 
						|
  param[3]=nera_best;
 | 
						|
  param[4]=1000.0*pp2/pp1;
 | 
						|
  param[5]=ntotal_min;
 | 
						|
  param[6]=ntry[0];
 | 
						|
  param[7]=1000.0*pp2;
 | 
						|
  param[8]=1000.0*pp1;
 | 
						|
  if(param[0]==0) param[2]=-1;
 | 
						|
  return;
 | 
						|
}
 |