75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//  Copyright (c) 2015 John Maddock
 | 
						|
//  Use, modification and distribution are subject to the
 | 
						|
//  Boost Software License, Version 1.0. (See accompanying file
 | 
						|
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
//
 | 
						|
 | 
						|
#ifndef BOOST_MATH_ELLINT_JZ_HPP
 | 
						|
#define BOOST_MATH_ELLINT_JZ_HPP
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#pragma once
 | 
						|
#endif
 | 
						|
 | 
						|
#include <boost/math/special_functions/math_fwd.hpp>
 | 
						|
#include <boost/math/special_functions/ellint_1.hpp>
 | 
						|
#include <boost/math/special_functions/ellint_rj.hpp>
 | 
						|
#include <boost/math/constants/constants.hpp>
 | 
						|
#include <boost/math/policies/error_handling.hpp>
 | 
						|
#include <boost/math/tools/workaround.hpp>
 | 
						|
 | 
						|
// Elliptic integral the Jacobi Zeta function.
 | 
						|
 | 
						|
namespace boost { namespace math { 
 | 
						|
   
 | 
						|
namespace detail{
 | 
						|
 | 
						|
// Elliptic integral - Jacobi Zeta
 | 
						|
template <typename T, typename Policy>
 | 
						|
T jacobi_zeta_imp(T phi, T k, const Policy& pol)
 | 
						|
{
 | 
						|
    BOOST_MATH_STD_USING
 | 
						|
    using namespace boost::math::tools;
 | 
						|
    using namespace boost::math::constants;
 | 
						|
 | 
						|
    bool invert = false;
 | 
						|
    if(phi < 0)
 | 
						|
    {
 | 
						|
       phi = fabs(phi);
 | 
						|
       invert = true;
 | 
						|
    }
 | 
						|
 | 
						|
    T result;
 | 
						|
    T sinp = sin(phi);
 | 
						|
    T cosp = cos(phi);
 | 
						|
    T s2 = sinp * sinp;
 | 
						|
    T k2 = k * k;
 | 
						|
    T kp = 1 - k2;
 | 
						|
    if(k == 1)
 | 
						|
       result = sinp * (boost::math::sign)(cosp);  // We get here by simplifying JacobiZeta[w, 1] in Mathematica, and the fact that 0 <= phi.
 | 
						|
    else
 | 
						|
       result = k2 * sinp * cosp * sqrt(1 - k2 * s2) * ellint_rj_imp(T(0), kp, T(1), T(1 - k2 * s2), pol) / (3 * ellint_k_imp(k, pol));
 | 
						|
    return invert ? T(-result) : result;
 | 
						|
}
 | 
						|
 | 
						|
} // detail
 | 
						|
 | 
						|
template <class T1, class T2, class Policy>
 | 
						|
inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi, const Policy& pol)
 | 
						|
{
 | 
						|
   typedef typename tools::promote_args<T1, T2>::type result_type;
 | 
						|
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | 
						|
   return policies::checked_narrowing_cast<result_type, Policy>(detail::jacobi_zeta_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::jacobi_zeta<%1%>(%1%,%1%)");
 | 
						|
}
 | 
						|
 | 
						|
template <class T1, class T2>
 | 
						|
inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi)
 | 
						|
{
 | 
						|
   return boost::math::jacobi_zeta(k, phi, policies::policy<>());
 | 
						|
}
 | 
						|
 | 
						|
}} // namespaces
 | 
						|
 | 
						|
#endif // BOOST_MATH_ELLINT_D_HPP
 | 
						|
 |