793 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			793 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
 | 
						|
// Copyright Christopher Kormanyos 2002 - 2011.
 | 
						|
// Copyright 2011 John Maddock. Distributed under the Boost
 | 
						|
// Distributed under the Boost Software License, Version 1.0.
 | 
						|
//    (See accompanying file LICENSE_1_0.txt or copy at
 | 
						|
//          http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
// This work is based on an earlier work:
 | 
						|
// "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
 | 
						|
// in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
 | 
						|
//
 | 
						|
// This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
 | 
						|
// 
 | 
						|
 | 
						|
#ifdef BOOST_MSVC
 | 
						|
#pragma warning(push)
 | 
						|
#pragma warning(disable:6326)  // comparison of two constants
 | 
						|
#endif
 | 
						|
 | 
						|
template <class T>
 | 
						|
void hyp0F1(T& result, const T& b, const T& x)
 | 
						|
{
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type;
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
 | 
						|
 | 
						|
   // Compute the series representation of Hypergeometric0F1 taken from
 | 
						|
   // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/06/01/01/
 | 
						|
   // There are no checks on input range or parameter boundaries.
 | 
						|
 | 
						|
   T x_pow_n_div_n_fact(x);
 | 
						|
   T pochham_b         (b);
 | 
						|
   T bp                (b);
 | 
						|
 | 
						|
   eval_divide(result, x_pow_n_div_n_fact, pochham_b);
 | 
						|
   eval_add(result, ui_type(1));
 | 
						|
 | 
						|
   si_type n;
 | 
						|
 | 
						|
   T tol;
 | 
						|
   tol = ui_type(1);
 | 
						|
   eval_ldexp(tol, tol, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
 | 
						|
   eval_multiply(tol, result);
 | 
						|
   if(eval_get_sign(tol) < 0)
 | 
						|
      tol.negate();
 | 
						|
   T term;
 | 
						|
 | 
						|
   const int series_limit = 
 | 
						|
      boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
 | 
						|
      ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
 | 
						|
   // Series expansion of hyperg_0f1(; b; x).
 | 
						|
   for(n = 2; n < series_limit; ++n)
 | 
						|
   {
 | 
						|
      eval_multiply(x_pow_n_div_n_fact, x);
 | 
						|
      eval_divide(x_pow_n_div_n_fact, n);
 | 
						|
      eval_increment(bp);
 | 
						|
      eval_multiply(pochham_b, bp);
 | 
						|
 | 
						|
      eval_divide(term, x_pow_n_div_n_fact, pochham_b);
 | 
						|
      eval_add(result, term);
 | 
						|
 | 
						|
      bool neg_term = eval_get_sign(term) < 0;
 | 
						|
      if(neg_term)
 | 
						|
         term.negate();
 | 
						|
      if(term.compare(tol) <= 0)
 | 
						|
         break;
 | 
						|
   }
 | 
						|
 | 
						|
   if(n >= series_limit)
 | 
						|
      BOOST_THROW_EXCEPTION(std::runtime_error("H0F1 Failed to Converge"));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
void eval_sin(T& result, const T& x)
 | 
						|
{
 | 
						|
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The sin function is only valid for floating point types.");
 | 
						|
   if(&result == &x)
 | 
						|
   {
 | 
						|
      T temp;
 | 
						|
      eval_sin(temp, x);
 | 
						|
      result = temp;
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type;
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
 | 
						|
   typedef typename mpl::front<typename T::float_types>::type fp_type;
 | 
						|
 | 
						|
   switch(eval_fpclassify(x))
 | 
						|
   {
 | 
						|
   case FP_INFINITE:
 | 
						|
   case FP_NAN:
 | 
						|
      if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
 | 
						|
         result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
 | 
						|
      else
 | 
						|
         BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
 | 
						|
      return;
 | 
						|
   case FP_ZERO:
 | 
						|
      result = ui_type(0);
 | 
						|
      return;
 | 
						|
   default: ;
 | 
						|
   }
 | 
						|
 | 
						|
   // Local copy of the argument
 | 
						|
   T xx = x;
 | 
						|
 | 
						|
   // Analyze and prepare the phase of the argument.
 | 
						|
   // Make a local, positive copy of the argument, xx.
 | 
						|
   // The argument xx will be reduced to 0 <= xx <= pi/2.
 | 
						|
   bool b_negate_sin = false;
 | 
						|
 | 
						|
   if(eval_get_sign(x) < 0)
 | 
						|
   {
 | 
						|
      xx.negate();
 | 
						|
      b_negate_sin = !b_negate_sin;
 | 
						|
   }
 | 
						|
 | 
						|
   T n_pi, t;
 | 
						|
   // Remove even multiples of pi.
 | 
						|
   if(xx.compare(get_constant_pi<T>()) > 0)
 | 
						|
   {
 | 
						|
      eval_divide(n_pi, xx, get_constant_pi<T>());
 | 
						|
      eval_trunc(n_pi, n_pi);
 | 
						|
      t = ui_type(2);
 | 
						|
      eval_fmod(t, n_pi, t);
 | 
						|
      const bool b_n_pi_is_even = eval_get_sign(t) == 0;
 | 
						|
      eval_multiply(n_pi, get_constant_pi<T>());
 | 
						|
      eval_subtract(xx, n_pi);
 | 
						|
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
 | 
						|
 | 
						|
      // Adjust signs if the multiple of pi is not even.
 | 
						|
      if(!b_n_pi_is_even)
 | 
						|
      {
 | 
						|
         b_negate_sin = !b_negate_sin;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   // Reduce the argument to 0 <= xx <= pi/2.
 | 
						|
   eval_ldexp(t, get_constant_pi<T>(), -1);
 | 
						|
   if(xx.compare(t) > 0)
 | 
						|
   {
 | 
						|
      eval_subtract(xx, get_constant_pi<T>(), xx);
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
 | 
						|
   }
 | 
						|
 | 
						|
   eval_subtract(t, xx);
 | 
						|
   const bool b_zero    = eval_get_sign(xx) == 0;
 | 
						|
   const bool b_pi_half = eval_get_sign(t) == 0;
 | 
						|
 | 
						|
   // Check if the reduced argument is very close to 0 or pi/2.
 | 
						|
   const bool    b_near_zero    = xx.compare(fp_type(1e-1)) < 0;
 | 
						|
   const bool    b_near_pi_half = t.compare(fp_type(1e-1)) < 0;;
 | 
						|
 | 
						|
   if(b_zero)
 | 
						|
   {
 | 
						|
      result = ui_type(0);
 | 
						|
   }
 | 
						|
   else if(b_pi_half)
 | 
						|
   {
 | 
						|
      result = ui_type(1);
 | 
						|
   }
 | 
						|
   else if(b_near_zero)
 | 
						|
   {
 | 
						|
      eval_multiply(t, xx, xx);
 | 
						|
      eval_divide(t, si_type(-4));
 | 
						|
      T t2;
 | 
						|
      t2 = fp_type(1.5);
 | 
						|
      hyp0F1(result, t2, t);
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
 | 
						|
      eval_multiply(result, xx);
 | 
						|
   }
 | 
						|
   else if(b_near_pi_half)
 | 
						|
   {
 | 
						|
      eval_multiply(t, t);
 | 
						|
      eval_divide(t, si_type(-4));
 | 
						|
      T t2;
 | 
						|
      t2 = fp_type(0.5);
 | 
						|
      hyp0F1(result, t2, t);
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
 | 
						|
   }
 | 
						|
   else
 | 
						|
   {
 | 
						|
      // Scale to a small argument for an efficient Taylor series,
 | 
						|
      // implemented as a hypergeometric function. Use a standard
 | 
						|
      // divide by three identity a certain number of times.
 | 
						|
      // Here we use division by 3^9 --> (19683 = 3^9).
 | 
						|
 | 
						|
      static const si_type n_scale = 9;
 | 
						|
      static const si_type n_three_pow_scale = static_cast<si_type>(19683L);
 | 
						|
 | 
						|
      eval_divide(xx, n_three_pow_scale);
 | 
						|
 | 
						|
      // Now with small arguments, we are ready for a series expansion.
 | 
						|
      eval_multiply(t, xx, xx);
 | 
						|
      eval_divide(t, si_type(-4));
 | 
						|
      T t2;
 | 
						|
      t2 = fp_type(1.5);
 | 
						|
      hyp0F1(result, t2, t);
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
 | 
						|
      eval_multiply(result, xx);
 | 
						|
 | 
						|
      // Convert back using multiple angle identity.
 | 
						|
      for(boost::int32_t k = static_cast<boost::int32_t>(0); k < n_scale; k++)
 | 
						|
      {
 | 
						|
         // Rescale the cosine value using the multiple angle identity.
 | 
						|
         eval_multiply(t2, result, ui_type(3));
 | 
						|
         eval_multiply(t, result, result);
 | 
						|
         eval_multiply(t, result);
 | 
						|
         eval_multiply(t, ui_type(4));
 | 
						|
         eval_subtract(result, t2, t);
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   if(b_negate_sin)
 | 
						|
      result.negate();
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
void eval_cos(T& result, const T& x)
 | 
						|
{
 | 
						|
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The cos function is only valid for floating point types.");
 | 
						|
   if(&result == &x)
 | 
						|
   {
 | 
						|
      T temp;
 | 
						|
      eval_cos(temp, x);
 | 
						|
      result = temp;
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type;
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
 | 
						|
   typedef typename mpl::front<typename T::float_types>::type fp_type;
 | 
						|
 | 
						|
   switch(eval_fpclassify(x))
 | 
						|
   {
 | 
						|
   case FP_INFINITE:
 | 
						|
   case FP_NAN:
 | 
						|
      if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
 | 
						|
         result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
 | 
						|
      else
 | 
						|
         BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
 | 
						|
      return;
 | 
						|
   case FP_ZERO:
 | 
						|
      result = ui_type(1);
 | 
						|
      return;
 | 
						|
   default: ;
 | 
						|
   }
 | 
						|
 | 
						|
   // Local copy of the argument
 | 
						|
   T xx = x;
 | 
						|
 | 
						|
   // Analyze and prepare the phase of the argument.
 | 
						|
   // Make a local, positive copy of the argument, xx.
 | 
						|
   // The argument xx will be reduced to 0 <= xx <= pi/2.
 | 
						|
   bool b_negate_cos = false;
 | 
						|
 | 
						|
   if(eval_get_sign(x) < 0)
 | 
						|
   {
 | 
						|
      xx.negate();
 | 
						|
   }
 | 
						|
 | 
						|
   T n_pi, t;
 | 
						|
   // Remove even multiples of pi.
 | 
						|
   if(xx.compare(get_constant_pi<T>()) > 0)
 | 
						|
   {
 | 
						|
      eval_divide(t, xx, get_constant_pi<T>());
 | 
						|
      eval_trunc(n_pi, t);
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
 | 
						|
      eval_multiply(t, n_pi, get_constant_pi<T>());
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(t.str(0, std::ios_base::scientific));
 | 
						|
      eval_subtract(xx, t);
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
 | 
						|
 | 
						|
      // Adjust signs if the multiple of pi is not even.
 | 
						|
      t = ui_type(2);
 | 
						|
      eval_fmod(t, n_pi, t);
 | 
						|
      const bool b_n_pi_is_even = eval_get_sign(t) == 0;
 | 
						|
 | 
						|
      if(!b_n_pi_is_even)
 | 
						|
      {
 | 
						|
         b_negate_cos = !b_negate_cos;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   // Reduce the argument to 0 <= xx <= pi/2.
 | 
						|
   eval_ldexp(t, get_constant_pi<T>(), -1);
 | 
						|
   int com = xx.compare(t);
 | 
						|
   if(com > 0)
 | 
						|
   {
 | 
						|
      eval_subtract(xx, get_constant_pi<T>(), xx);
 | 
						|
      b_negate_cos = !b_negate_cos;
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
 | 
						|
   }
 | 
						|
 | 
						|
   const bool b_zero    = eval_get_sign(xx) == 0;
 | 
						|
   const bool b_pi_half = com == 0;
 | 
						|
 | 
						|
   // Check if the reduced argument is very close to 0.
 | 
						|
   const bool    b_near_zero    = xx.compare(fp_type(1e-1)) < 0;
 | 
						|
 | 
						|
   if(b_zero)
 | 
						|
   {
 | 
						|
      result = si_type(1);
 | 
						|
   }
 | 
						|
   else if(b_pi_half)
 | 
						|
   {
 | 
						|
      result = si_type(0);
 | 
						|
   }
 | 
						|
   else if(b_near_zero)
 | 
						|
   {
 | 
						|
      eval_multiply(t, xx, xx);
 | 
						|
      eval_divide(t, si_type(-4));
 | 
						|
      n_pi = fp_type(0.5f);
 | 
						|
      hyp0F1(result, n_pi, t);
 | 
						|
      BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
 | 
						|
   }
 | 
						|
   else
 | 
						|
   {
 | 
						|
      eval_subtract(t, xx);
 | 
						|
      eval_sin(result, t);
 | 
						|
   }
 | 
						|
   if(b_negate_cos)
 | 
						|
      result.negate();
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
void eval_tan(T& result, const T& x)
 | 
						|
{
 | 
						|
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The tan function is only valid for floating point types.");
 | 
						|
   if(&result == &x)
 | 
						|
   {
 | 
						|
      T temp;
 | 
						|
      eval_tan(temp, x);
 | 
						|
      result = temp;
 | 
						|
      return;
 | 
						|
   }
 | 
						|
   T t;
 | 
						|
   eval_sin(result, x);
 | 
						|
   eval_cos(t, x);
 | 
						|
   eval_divide(result, t);
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
void hyp2F1(T& result, const T& a, const T& b, const T& c, const T& x)
 | 
						|
{
 | 
						|
  // Compute the series representation of hyperg_2f1 taken from
 | 
						|
  // Abramowitz and Stegun 15.1.1.
 | 
						|
  // There are no checks on input range or parameter boundaries.
 | 
						|
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
 | 
						|
 | 
						|
   T x_pow_n_div_n_fact(x);
 | 
						|
   T pochham_a         (a);
 | 
						|
   T pochham_b         (b);
 | 
						|
   T pochham_c         (c);
 | 
						|
   T ap                (a);
 | 
						|
   T bp                (b);
 | 
						|
   T cp                (c);
 | 
						|
 | 
						|
   eval_multiply(result, pochham_a, pochham_b);
 | 
						|
   eval_divide(result, pochham_c);
 | 
						|
   eval_multiply(result, x_pow_n_div_n_fact);
 | 
						|
   eval_add(result, ui_type(1));
 | 
						|
 | 
						|
   T lim;
 | 
						|
   eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
 | 
						|
 | 
						|
   if(eval_get_sign(lim) < 0)
 | 
						|
      lim.negate();
 | 
						|
 | 
						|
   ui_type n;
 | 
						|
   T term;
 | 
						|
 | 
						|
   const unsigned series_limit = 
 | 
						|
      boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
 | 
						|
      ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
 | 
						|
   // Series expansion of hyperg_2f1(a, b; c; x).
 | 
						|
   for(n = 2; n < series_limit; ++n)
 | 
						|
   {
 | 
						|
      eval_multiply(x_pow_n_div_n_fact, x);
 | 
						|
      eval_divide(x_pow_n_div_n_fact, n);
 | 
						|
 | 
						|
      eval_increment(ap);
 | 
						|
      eval_multiply(pochham_a, ap);
 | 
						|
      eval_increment(bp);
 | 
						|
      eval_multiply(pochham_b, bp);
 | 
						|
      eval_increment(cp);
 | 
						|
      eval_multiply(pochham_c, cp);
 | 
						|
 | 
						|
      eval_multiply(term, pochham_a, pochham_b);
 | 
						|
      eval_divide(term, pochham_c);
 | 
						|
      eval_multiply(term, x_pow_n_div_n_fact);
 | 
						|
      eval_add(result, term);
 | 
						|
 | 
						|
      if(eval_get_sign(term) < 0)
 | 
						|
         term.negate();
 | 
						|
      if(lim.compare(term) >= 0)
 | 
						|
         break;
 | 
						|
   }
 | 
						|
   if(n > series_limit)
 | 
						|
      BOOST_THROW_EXCEPTION(std::runtime_error("H2F1 failed to converge."));
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
void eval_asin(T& result, const T& x)
 | 
						|
{
 | 
						|
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The asin function is only valid for floating point types.");
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
 | 
						|
   typedef typename mpl::front<typename T::float_types>::type fp_type;
 | 
						|
 | 
						|
   if(&result == &x)
 | 
						|
   {
 | 
						|
      T t(x);
 | 
						|
      eval_asin(result, t);
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   switch(eval_fpclassify(x))
 | 
						|
   {
 | 
						|
   case FP_NAN:
 | 
						|
   case FP_INFINITE:
 | 
						|
      if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
 | 
						|
         result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
 | 
						|
      else
 | 
						|
         BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
 | 
						|
      return;
 | 
						|
   case FP_ZERO:
 | 
						|
      result = ui_type(0);
 | 
						|
      return;
 | 
						|
   default: ;
 | 
						|
   }
 | 
						|
 | 
						|
   const bool b_neg = eval_get_sign(x) < 0;
 | 
						|
 | 
						|
   T xx(x);
 | 
						|
   if(b_neg)
 | 
						|
      xx.negate();
 | 
						|
 | 
						|
   int c = xx.compare(ui_type(1));
 | 
						|
   if(c > 0)
 | 
						|
   {
 | 
						|
      if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
 | 
						|
         result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
 | 
						|
      else
 | 
						|
         BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
 | 
						|
      return;
 | 
						|
   }
 | 
						|
   else if(c == 0)
 | 
						|
   {
 | 
						|
      result = get_constant_pi<T>();
 | 
						|
      eval_ldexp(result, result, -1);
 | 
						|
      if(b_neg)
 | 
						|
         result.negate();
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   if(xx.compare(fp_type(1e-4)) < 0)
 | 
						|
   {
 | 
						|
      // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/
 | 
						|
      eval_multiply(xx, xx);
 | 
						|
      T t1, t2;
 | 
						|
      t1 = fp_type(0.5f);
 | 
						|
      t2 = fp_type(1.5f);
 | 
						|
      hyp2F1(result, t1, t1, t2, xx);
 | 
						|
      eval_multiply(result, x);
 | 
						|
      return;
 | 
						|
   }
 | 
						|
   else if(xx.compare(fp_type(1 - 1e-4f)) > 0)
 | 
						|
   {
 | 
						|
      T dx1;
 | 
						|
      T t1, t2;
 | 
						|
      eval_subtract(dx1, ui_type(1), xx);
 | 
						|
      t1 = fp_type(0.5f);
 | 
						|
      t2 = fp_type(1.5f);
 | 
						|
      eval_ldexp(dx1, dx1, -1);
 | 
						|
      hyp2F1(result, t1, t1, t2, dx1);
 | 
						|
      eval_ldexp(dx1, dx1, 2);
 | 
						|
      eval_sqrt(t1, dx1);
 | 
						|
      eval_multiply(result, t1);
 | 
						|
      eval_ldexp(t1, get_constant_pi<T>(), -1);
 | 
						|
      result.negate();
 | 
						|
      eval_add(result, t1);
 | 
						|
      if(b_neg)
 | 
						|
         result.negate();
 | 
						|
      return;
 | 
						|
   }
 | 
						|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<long double, T>::type guess_type;
 | 
						|
#else
 | 
						|
   typedef fp_type guess_type;
 | 
						|
#endif
 | 
						|
   // Get initial estimate using standard math function asin.
 | 
						|
   guess_type dd;
 | 
						|
   eval_convert_to(&dd, xx);
 | 
						|
 | 
						|
   result = (guess_type)(std::asin(dd));
 | 
						|
 | 
						|
   // Newton-Raphson iteration, we should double our precision with each iteration, 
 | 
						|
   // in practice this seems to not quite work in all cases... so terminate when we
 | 
						|
   // have at least 2/3 of the digits correct on the assumption that the correction 
 | 
						|
   // we've just added will finish the job...
 | 
						|
 | 
						|
   boost::intmax_t current_precision = eval_ilogb(result);
 | 
						|
   boost::intmax_t target_precision = current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3;
 | 
						|
 | 
						|
   // Newton-Raphson iteration
 | 
						|
   while(current_precision > target_precision)
 | 
						|
   {
 | 
						|
      T sine, cosine;
 | 
						|
      eval_sin(sine, result);
 | 
						|
      eval_cos(cosine, result);
 | 
						|
      eval_subtract(sine, xx);
 | 
						|
      eval_divide(sine, cosine);
 | 
						|
      eval_subtract(result, sine);
 | 
						|
      current_precision = eval_ilogb(sine);
 | 
						|
#ifdef FP_ILOGB0
 | 
						|
      if(current_precision == FP_ILOGB0)
 | 
						|
         break;
 | 
						|
#endif
 | 
						|
   }
 | 
						|
   if(b_neg)
 | 
						|
      result.negate();
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
inline void eval_acos(T& result, const T& x)
 | 
						|
{
 | 
						|
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The acos function is only valid for floating point types.");
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
 | 
						|
 | 
						|
   switch(eval_fpclassify(x))
 | 
						|
   {
 | 
						|
   case FP_NAN:
 | 
						|
   case FP_INFINITE:
 | 
						|
      if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
 | 
						|
         result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
 | 
						|
      else
 | 
						|
         BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
 | 
						|
      return;
 | 
						|
   case FP_ZERO:
 | 
						|
      result = get_constant_pi<T>();
 | 
						|
      eval_ldexp(result, result, -1); // divide by two.
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   eval_abs(result, x);
 | 
						|
   int c = result.compare(ui_type(1));
 | 
						|
 | 
						|
   if(c > 0)
 | 
						|
   {
 | 
						|
      if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
 | 
						|
         result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
 | 
						|
      else
 | 
						|
         BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
 | 
						|
      return;
 | 
						|
   }
 | 
						|
   else if(c == 0)
 | 
						|
   {
 | 
						|
      if(eval_get_sign(x) < 0)
 | 
						|
         result = get_constant_pi<T>();
 | 
						|
      else
 | 
						|
         result = ui_type(0);
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   eval_asin(result, x);
 | 
						|
   T t;
 | 
						|
   eval_ldexp(t, get_constant_pi<T>(), -1);
 | 
						|
   eval_subtract(result, t);
 | 
						|
   result.negate();
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
void eval_atan(T& result, const T& x)
 | 
						|
{
 | 
						|
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The atan function is only valid for floating point types.");
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type;
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
 | 
						|
   typedef typename mpl::front<typename T::float_types>::type fp_type;
 | 
						|
 | 
						|
   switch(eval_fpclassify(x))
 | 
						|
   {
 | 
						|
   case FP_NAN:
 | 
						|
      result = x;
 | 
						|
      return;
 | 
						|
   case FP_ZERO:
 | 
						|
      result = ui_type(0);
 | 
						|
      return;
 | 
						|
   case FP_INFINITE:
 | 
						|
      if(eval_get_sign(x) < 0)
 | 
						|
      {
 | 
						|
         eval_ldexp(result, get_constant_pi<T>(), -1);
 | 
						|
         result.negate();
 | 
						|
      }
 | 
						|
      else
 | 
						|
         eval_ldexp(result, get_constant_pi<T>(), -1);
 | 
						|
      return;
 | 
						|
   default: ;
 | 
						|
   }
 | 
						|
 | 
						|
   const bool b_neg = eval_get_sign(x) < 0;
 | 
						|
 | 
						|
   T xx(x);
 | 
						|
   if(b_neg)
 | 
						|
      xx.negate();
 | 
						|
 | 
						|
   if(xx.compare(fp_type(0.1)) < 0)
 | 
						|
   {
 | 
						|
      T t1, t2, t3;
 | 
						|
      t1 = ui_type(1);
 | 
						|
      t2 = fp_type(0.5f);
 | 
						|
      t3 = fp_type(1.5f);
 | 
						|
      eval_multiply(xx, xx);
 | 
						|
      xx.negate();
 | 
						|
      hyp2F1(result, t1, t2, t3, xx);
 | 
						|
      eval_multiply(result, x);
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   if(xx.compare(fp_type(10)) > 0)
 | 
						|
   {
 | 
						|
      T t1, t2, t3;
 | 
						|
      t1 = fp_type(0.5f);
 | 
						|
      t2 = ui_type(1u);
 | 
						|
      t3 = fp_type(1.5f);
 | 
						|
      eval_multiply(xx, xx);
 | 
						|
      eval_divide(xx, si_type(-1), xx);
 | 
						|
      hyp2F1(result, t1, t2, t3, xx);
 | 
						|
      eval_divide(result, x);
 | 
						|
      if(!b_neg)
 | 
						|
         result.negate();
 | 
						|
      eval_ldexp(t1, get_constant_pi<T>(), -1);
 | 
						|
      eval_add(result, t1);
 | 
						|
      if(b_neg)
 | 
						|
         result.negate();
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
 | 
						|
   // Get initial estimate using standard math function atan.
 | 
						|
   fp_type d;
 | 
						|
   eval_convert_to(&d, xx);
 | 
						|
   result = fp_type(std::atan(d));
 | 
						|
 | 
						|
   // Newton-Raphson iteration, we should double our precision with each iteration, 
 | 
						|
   // in practice this seems to not quite work in all cases... so terminate when we
 | 
						|
   // have at least 2/3 of the digits correct on the assumption that the correction 
 | 
						|
   // we've just added will finish the job...
 | 
						|
 | 
						|
   boost::intmax_t current_precision = eval_ilogb(result);
 | 
						|
   boost::intmax_t target_precision = current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3;
 | 
						|
 | 
						|
   T s, c, t;
 | 
						|
   while(current_precision > target_precision)
 | 
						|
   {
 | 
						|
      eval_sin(s, result);
 | 
						|
      eval_cos(c, result);
 | 
						|
      eval_multiply(t, xx, c);
 | 
						|
      eval_subtract(t, s);
 | 
						|
      eval_multiply(s, t, c);
 | 
						|
      eval_add(result, s);
 | 
						|
      current_precision = eval_ilogb(s);
 | 
						|
#ifdef FP_ILOGB0
 | 
						|
      if(current_precision == FP_ILOGB0)
 | 
						|
         break;
 | 
						|
#endif
 | 
						|
   }
 | 
						|
   if(b_neg)
 | 
						|
      result.negate();
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
void eval_atan2(T& result, const T& y, const T& x)
 | 
						|
{
 | 
						|
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The atan2 function is only valid for floating point types.");
 | 
						|
   if(&result == &y)
 | 
						|
   {
 | 
						|
      T temp(y);
 | 
						|
      eval_atan2(result, temp, x);
 | 
						|
      return;
 | 
						|
   }
 | 
						|
   else if(&result == &x)
 | 
						|
   {
 | 
						|
      T temp(x);
 | 
						|
      eval_atan2(result, y, temp);
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
 | 
						|
 | 
						|
   switch(eval_fpclassify(y))
 | 
						|
   {
 | 
						|
   case FP_NAN:
 | 
						|
      result = y;
 | 
						|
      return;
 | 
						|
   case FP_ZERO:
 | 
						|
      {
 | 
						|
         int c = eval_get_sign(x);
 | 
						|
         if(c < 0)
 | 
						|
            result = get_constant_pi<T>();
 | 
						|
         else if(c >= 0)
 | 
						|
            result = ui_type(0); // Note we allow atan2(0,0) to be zero, even though it's mathematically undefined
 | 
						|
         return;
 | 
						|
      }
 | 
						|
   case FP_INFINITE:
 | 
						|
      {
 | 
						|
         if(eval_fpclassify(x) == FP_INFINITE)
 | 
						|
         {
 | 
						|
            if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
 | 
						|
               result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
 | 
						|
            else
 | 
						|
               BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
 | 
						|
         }
 | 
						|
         else
 | 
						|
         {
 | 
						|
            eval_ldexp(result, get_constant_pi<T>(), -1);
 | 
						|
            if(eval_get_sign(y) < 0)
 | 
						|
               result.negate();
 | 
						|
         }
 | 
						|
         return;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   switch(eval_fpclassify(x))
 | 
						|
   {
 | 
						|
   case FP_NAN:
 | 
						|
      result = x;
 | 
						|
      return;
 | 
						|
   case FP_ZERO:
 | 
						|
      {
 | 
						|
         eval_ldexp(result, get_constant_pi<T>(), -1);
 | 
						|
         if(eval_get_sign(y) < 0)
 | 
						|
            result.negate();
 | 
						|
         return;
 | 
						|
      }
 | 
						|
   case FP_INFINITE:
 | 
						|
      if(eval_get_sign(x) > 0)
 | 
						|
         result = ui_type(0);
 | 
						|
      else
 | 
						|
         result = get_constant_pi<T>();
 | 
						|
      if(eval_get_sign(y) < 0)
 | 
						|
         result.negate();
 | 
						|
      return;
 | 
						|
   }
 | 
						|
 | 
						|
   T xx;
 | 
						|
   eval_divide(xx, y, x);
 | 
						|
   if(eval_get_sign(xx) < 0)
 | 
						|
      xx.negate();
 | 
						|
 | 
						|
   eval_atan(result, xx);
 | 
						|
 | 
						|
   // Determine quadrant (sign) based on signs of x, y
 | 
						|
   const bool y_neg = eval_get_sign(y) < 0;
 | 
						|
   const bool x_neg = eval_get_sign(x) < 0;
 | 
						|
 | 
						|
   if(y_neg != x_neg)
 | 
						|
      result.negate();
 | 
						|
 | 
						|
   if(x_neg)
 | 
						|
   {
 | 
						|
      if(y_neg)
 | 
						|
         eval_subtract(result, get_constant_pi<T>());
 | 
						|
      else
 | 
						|
         eval_add(result, get_constant_pi<T>());
 | 
						|
   }
 | 
						|
}
 | 
						|
template<class T, class A> 
 | 
						|
inline typename enable_if<is_arithmetic<A>, void>::type eval_atan2(T& result, const T& x, const A& a)
 | 
						|
{
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
 | 
						|
   typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
 | 
						|
   cast_type c;
 | 
						|
   c = a;
 | 
						|
   eval_atan2(result, x, c);
 | 
						|
}
 | 
						|
 | 
						|
template<class T, class A> 
 | 
						|
inline typename enable_if<is_arithmetic<A>, void>::type eval_atan2(T& result, const A& x, const T& a)
 | 
						|
{
 | 
						|
   typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
 | 
						|
   typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
 | 
						|
   cast_type c;
 | 
						|
   c = x;
 | 
						|
   eval_atan2(result, c, a);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef BOOST_MSVC
 | 
						|
#pragma warning(pop)
 | 
						|
#endif
 |