165 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
program chkfft
 | 
						|
 | 
						|
! Tests and times one-dimensional FFTs computed by four2a().
 | 
						|
! An all-Fortran version of four2a() is available, but the preferred
 | 
						|
! version uses calls to the FFTW library.
 | 
						|
 | 
						|
  parameter (NMAX=8*1024*1024)            !Maximum FFT length
 | 
						|
  complex a(NMAX),b(NMAX)
 | 
						|
  real ar(NMAX),br(NMAX)
 | 
						|
  real mflops
 | 
						|
  character infile*12,arg*8
 | 
						|
  logical list
 | 
						|
  common/patience/npatience
 | 
						|
  equivalence (a,ar),(b,br)
 | 
						|
 | 
						|
  nargs=iargc()
 | 
						|
  if(nargs.ne.5) then
 | 
						|
     print*,'Usage: chkfft <nfft | infile> nr nw nc np'
 | 
						|
     print*,'       nfft:   length of FFT'
 | 
						|
     print*,'       nfft=0: do lengths 2^n, n=2^4 to 2^23'
 | 
						|
     print*,'       infile: name of file with nfft values, one per line'
 | 
						|
     print*,'       nr:     0/1 to not read (or read) wisdom'
 | 
						|
     print*,'       nw:     0/1 to not write (or write) wisdom'
 | 
						|
     print*,'       nc:     0/1 for real or complex data'
 | 
						|
     print*,'       np:     0-4 patience for finding best algorithm'
 | 
						|
     go to 999
 | 
						|
  endif
 | 
						|
 | 
						|
  list=.false.
 | 
						|
  nfft=-1
 | 
						|
  call getarg(1,infile)
 | 
						|
  open(10,file=infile,status='old',err=1)
 | 
						|
  list=.true.                          !A valid file name was provided
 | 
						|
  go to 2
 | 
						|
1 read(infile,*) nfft                  !Takje first argument to be nfft
 | 
						|
2  call getarg(2,arg)
 | 
						|
  read(arg,*) nr
 | 
						|
  call getarg(3,arg)
 | 
						|
  read(arg,*) nw
 | 
						|
  call getarg(4,arg)
 | 
						|
  read(arg,*) ncomplex
 | 
						|
  call getarg(5,arg)
 | 
						|
  read(arg,*) npatience
 | 
						|
 | 
						|
  call sgran()
 | 
						|
 | 
						|
  if(list) write(*,1000) infile,nr,nw,ncomplex,npatience
 | 
						|
1000 format(/'infile: ',a12,'   nr:',i2,'   nw',i2,'   nc:',i2,'   np:',i2/)
 | 
						|
  if(.not.list) write(*,1002) nfft,nr,nw,ncomplex,npatience
 | 
						|
1002 format(/'nfft: ',i10,'   nr:',i2,'   nw',i2,'   nc:',i2,'   np:',i2/)
 | 
						|
 | 
						|
  open(12,file='chkfft.out',status='unknown')
 | 
						|
  open(13,file='fftwf_wisdom.dat',status='unknown')
 | 
						|
 | 
						|
  if(nr.ne.0) then
 | 
						|
     call import_wisdom_from_file(isuccess,13)
 | 
						|
     if(isuccess.eq.0) then
 | 
						|
        write(*,1010) 
 | 
						|
1010    format('Failed to import FFTW wisdom.')
 | 
						|
        go to 999
 | 
						|
     endif
 | 
						|
  endif
 | 
						|
 | 
						|
  idum=-1                               !Set random seed
 | 
						|
  ndim=1                                !One-dimensional transforms
 | 
						|
  do i=1,NMAX                           !Set random data
 | 
						|
     x=gran()
 | 
						|
     y=gran()
 | 
						|
     b(i)=cmplx(x,y)                    !Generate random data
 | 
						|
  enddo
 | 
						|
 | 
						|
  iters=1000000
 | 
						|
  if(list .or. (nfft.gt.0)) then
 | 
						|
     n1=1
 | 
						|
     n2=1
 | 
						|
     if(nfft.eq.-1) n2=999999
 | 
						|
     write(*,1020) 
 | 
						|
1020 format('    NFFT     Time        rms      MHz   MFlops  iters',    &
 | 
						|
          '  tplan'/61('-'))
 | 
						|
  else
 | 
						|
     n1=4
 | 
						|
     n2=23
 | 
						|
     write(*,1030) 
 | 
						|
1030 format(' n   N=2^n     Time        rms      MHz   MFlops  iters',  &
 | 
						|
          '  tplan'/63('-'))
 | 
						|
  endif
 | 
						|
 | 
						|
  do ii=n1,n2                           !Test one or more FFT lengths
 | 
						|
     if(list) then
 | 
						|
        read(10,*,end=900) nfft         !Read nfft from file
 | 
						|
     else if(n2.gt.n1) then
 | 
						|
        nfft=2**ii                      !Do powers of 2
 | 
						|
     endif
 | 
						|
 | 
						|
     iformf=1
 | 
						|
     iformb=1
 | 
						|
     if(ncomplex.eq.0) then
 | 
						|
        iformf=0                        !Real-to-complex transform
 | 
						|
        iformb=-1                       !Complex-to-real (inverse) transform
 | 
						|
     endif
 | 
						|
 | 
						|
     if(nfft.gt.NMAX) go to 900
 | 
						|
     a(1:nfft)=b(1:nfft)                !Copy test data into a()
 | 
						|
     t0=second()
 | 
						|
     call four2a(a,nfft,ndim,-1,iformf) !Get planning time for forward FFT
 | 
						|
     call four2a(a,nfft,ndim,+1,iformb) !Get planning time for backward FFT
 | 
						|
     t2=second()
 | 
						|
     tplan=t2-t0                        !Total planning time for this length
 | 
						|
     
 | 
						|
     total=0.
 | 
						|
     do iter=1,iters                    !Now do many iterations
 | 
						|
        a(1:nfft)=b(1:nfft)             !Copy test data into a()
 | 
						|
 | 
						|
        t0=second()
 | 
						|
        call four2a(a,nfft,ndim,-1,iformf) !Forward FFT
 | 
						|
        call four2a(a,nfft,ndim,+1,iformb) !Backward FFT on same data
 | 
						|
        t1=second()
 | 
						|
        total=total+t1-t0
 | 
						|
        if(total.ge.1.0) go to 40       !Cut iterations short if t>1 s
 | 
						|
     enddo
 | 
						|
     iter=iters
 | 
						|
 | 
						|
40   time=0.5*total/iter                !Time for one FFT of current length
 | 
						|
     tplan=0.5*tplan-time               !Planning time for one FFT
 | 
						|
     if(tplan.lt.0) tplan=0.
 | 
						|
     a(1:nfft)=a(1:nfft)/nfft
 | 
						|
 | 
						|
! Compute RMS difference between original array and back-transformed array.
 | 
						|
     sq=0.
 | 
						|
     if(ncomplex.eq.1) then
 | 
						|
        do i=1,nfft
 | 
						|
           sq=sq + real(a(i)-b(i))**2 + imag(a(i)-b(i))**2
 | 
						|
        enddo
 | 
						|
     else
 | 
						|
        do i=1,nfft
 | 
						|
           sq=sq + (ar(i)-br(i))**2
 | 
						|
        enddo
 | 
						|
     endif
 | 
						|
     rms=sqrt(sq/nfft)
 | 
						|
 | 
						|
     freq=1.e-6*nfft/time
 | 
						|
     mflops=5.0/(1.e6*time/(nfft*log(float(nfft))/log(2.0)))
 | 
						|
     if(n2.eq.1 .or. n2.eq.999999) then
 | 
						|
        write(*,1050) nfft,time,rms,freq,mflops,iter,tplan
 | 
						|
        write(12,1050) nfft,time,rms,freq,mflops,iter,tplan
 | 
						|
1050    format(i8,f11.7,f12.8,f7.2,f8.1,i8,f6.1)
 | 
						|
     else
 | 
						|
        write(*,1060) ii,nfft,time,rms,freq,mflops,iter,tplan
 | 
						|
        write(12,1060) ii,nfft,time,rms,freq,mflops,iter,tplan
 | 
						|
1060    format(i2,i8,f11.7,f12.8,f7.2,f8.1,i8,f6.1)
 | 
						|
     endif
 | 
						|
     if(mod(ii,50).eq.0) call four2a(0,-1,0,0,0)
 | 
						|
  enddo
 | 
						|
 | 
						|
900  continue 
 | 
						|
  if(nw.eq.1) then
 | 
						|
     rewind 13
 | 
						|
     call export_wisdom_to_file(13)
 | 
						|
!     write(*,1070) 
 | 
						|
!1070 format(/'Exported FFTW wisdom')
 | 
						|
  endif
 | 
						|
 | 
						|
999 call four2a(0,-1,0,0,0)
 | 
						|
end program chkfft
 |