388 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			388 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
// Copyright John Maddock 2006.
 | 
						|
 | 
						|
// Use, modification and distribution are subject to the
 | 
						|
// Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt
 | 
						|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#ifndef BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
 | 
						|
#define BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
 | 
						|
 | 
						|
#include <boost/math/distributions/fwd.hpp>
 | 
						|
#include <boost/math/special_functions/beta.hpp> // for incomplete beta.
 | 
						|
#include <boost/math/distributions/complement.hpp> // complements
 | 
						|
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
 | 
						|
#include <boost/math/special_functions/fpclassify.hpp>
 | 
						|
 | 
						|
#include <utility>
 | 
						|
 | 
						|
namespace boost{ namespace math{
 | 
						|
 | 
						|
template <class RealType = double, class Policy = policies::policy<> >
 | 
						|
class fisher_f_distribution
 | 
						|
{
 | 
						|
public:
 | 
						|
   typedef RealType value_type;
 | 
						|
   typedef Policy policy_type;
 | 
						|
 | 
						|
   fisher_f_distribution(const RealType& i, const RealType& j) : m_df1(i), m_df2(j)
 | 
						|
   {
 | 
						|
      static const char* function = "fisher_f_distribution<%1%>::fisher_f_distribution";
 | 
						|
      RealType result;
 | 
						|
      detail::check_df(
 | 
						|
         function, m_df1, &result, Policy());
 | 
						|
      detail::check_df(
 | 
						|
         function, m_df2, &result, Policy());
 | 
						|
   } // fisher_f_distribution
 | 
						|
 | 
						|
   RealType degrees_of_freedom1()const
 | 
						|
   {
 | 
						|
      return m_df1;
 | 
						|
   }
 | 
						|
   RealType degrees_of_freedom2()const
 | 
						|
   {
 | 
						|
      return m_df2;
 | 
						|
   }
 | 
						|
 | 
						|
private:
 | 
						|
   //
 | 
						|
   // Data members:
 | 
						|
   //
 | 
						|
   RealType m_df1;  // degrees of freedom are a real number.
 | 
						|
   RealType m_df2;  // degrees of freedom are a real number.
 | 
						|
};
 | 
						|
 | 
						|
typedef fisher_f_distribution<double> fisher_f;
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline const std::pair<RealType, RealType> range(const fisher_f_distribution<RealType, Policy>& /*dist*/)
 | 
						|
{ // Range of permissible values for random variable x.
 | 
						|
   using boost::math::tools::max_value;
 | 
						|
   return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
 | 
						|
}
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline const std::pair<RealType, RealType> support(const fisher_f_distribution<RealType, Policy>& /*dist*/)
 | 
						|
{ // Range of supported values for random variable x.
 | 
						|
   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
 | 
						|
   using boost::math::tools::max_value;
 | 
						|
   return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
 | 
						|
}
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
RealType pdf(const fisher_f_distribution<RealType, Policy>& dist, const RealType& x)
 | 
						|
{
 | 
						|
   BOOST_MATH_STD_USING  // for ADL of std functions
 | 
						|
   RealType df1 = dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = dist.degrees_of_freedom2();
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   static const char* function = "boost::math::pdf(fisher_f_distribution<%1%> const&, %1%)";
 | 
						|
   if(false == (detail::check_df(
 | 
						|
         function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
         function, df2, &error_result, Policy())))
 | 
						|
      return error_result;
 | 
						|
 | 
						|
   if((x < 0) || !(boost::math::isfinite)(x))
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<RealType>(
 | 
						|
         function, "Random variable parameter was %1%, but must be > 0 !", x, Policy());
 | 
						|
   }
 | 
						|
 | 
						|
   if(x == 0)
 | 
						|
   {
 | 
						|
      // special cases:
 | 
						|
      if(df1 < 2)
 | 
						|
         return policies::raise_overflow_error<RealType>(
 | 
						|
            function, 0, Policy());
 | 
						|
      else if(df1 == 2)
 | 
						|
         return 1;
 | 
						|
      else
 | 
						|
         return 0;
 | 
						|
   }
 | 
						|
 | 
						|
   //
 | 
						|
   // You reach this formula by direct differentiation of the
 | 
						|
   // cdf expressed in terms of the incomplete beta.
 | 
						|
   //
 | 
						|
   // There are two versions so we don't pass a value of z
 | 
						|
   // that is very close to 1 to ibeta_derivative: for some values
 | 
						|
   // of df1 and df2, all the change takes place in this area.
 | 
						|
   //
 | 
						|
   RealType v1x = df1 * x;
 | 
						|
   RealType result;
 | 
						|
   if(v1x > df2)
 | 
						|
   {
 | 
						|
      result = (df2 * df1) / ((df2 + v1x) * (df2 + v1x));
 | 
						|
      result *= ibeta_derivative(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy());
 | 
						|
   }
 | 
						|
   else
 | 
						|
   {
 | 
						|
      result = df2 + df1 * x;
 | 
						|
      result = (result * df1 - x * df1 * df1) / (result * result);
 | 
						|
      result *= ibeta_derivative(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
 | 
						|
   }
 | 
						|
   return result;
 | 
						|
} // pdf
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType cdf(const fisher_f_distribution<RealType, Policy>& dist, const RealType& x)
 | 
						|
{
 | 
						|
   static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)";
 | 
						|
   RealType df1 = dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = dist.degrees_of_freedom2();
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == detail::check_df(
 | 
						|
         function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
         function, df2, &error_result, Policy()))
 | 
						|
      return error_result;
 | 
						|
 | 
						|
   if((x < 0) || !(boost::math::isfinite)(x))
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<RealType>(
 | 
						|
         function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy());
 | 
						|
   }
 | 
						|
 | 
						|
   RealType v1x = df1 * x;
 | 
						|
   //
 | 
						|
   // There are two equivalent formulas used here, the aim is
 | 
						|
   // to prevent the final argument to the incomplete beta
 | 
						|
   // from being too close to 1: for some values of df1 and df2
 | 
						|
   // the rate of change can be arbitrarily large in this area,
 | 
						|
   // whilst the value we're passing will have lost information
 | 
						|
   // content as a result of being 0.999999something.  Better
 | 
						|
   // to switch things around so we're passing 1-z instead.
 | 
						|
   //
 | 
						|
   return v1x > df2
 | 
						|
      ? boost::math::ibetac(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy())
 | 
						|
      : boost::math::ibeta(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
 | 
						|
} // cdf
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType quantile(const fisher_f_distribution<RealType, Policy>& dist, const RealType& p)
 | 
						|
{
 | 
						|
   static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)";
 | 
						|
   RealType df1 = dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = dist.degrees_of_freedom2();
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == (detail::check_df(
 | 
						|
            function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
            function, df2, &error_result, Policy())
 | 
						|
         && detail::check_probability(
 | 
						|
            function, p, &error_result, Policy())))
 | 
						|
      return error_result;
 | 
						|
 | 
						|
   // With optimizations turned on, gcc wrongly warns about y being used
 | 
						|
   // uninitializated unless we initialize it to something:
 | 
						|
   RealType x, y(0);
 | 
						|
 | 
						|
   x = boost::math::ibeta_inv(df1 / 2, df2 / 2, p, &y, Policy());
 | 
						|
 | 
						|
   return df2 * x / (df1 * y);
 | 
						|
} // quantile
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType cdf(const complemented2_type<fisher_f_distribution<RealType, Policy>, RealType>& c)
 | 
						|
{
 | 
						|
   static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)";
 | 
						|
   RealType df1 = c.dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = c.dist.degrees_of_freedom2();
 | 
						|
   RealType x = c.param;
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == detail::check_df(
 | 
						|
         function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
         function, df2, &error_result, Policy()))
 | 
						|
      return error_result;
 | 
						|
 | 
						|
   if((x < 0) || !(boost::math::isfinite)(x))
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<RealType>(
 | 
						|
         function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy());
 | 
						|
   }
 | 
						|
 | 
						|
   RealType v1x = df1 * x;
 | 
						|
   //
 | 
						|
   // There are two equivalent formulas used here, the aim is
 | 
						|
   // to prevent the final argument to the incomplete beta
 | 
						|
   // from being too close to 1: for some values of df1 and df2
 | 
						|
   // the rate of change can be arbitrarily large in this area,
 | 
						|
   // whilst the value we're passing will have lost information
 | 
						|
   // content as a result of being 0.999999something.  Better
 | 
						|
   // to switch things around so we're passing 1-z instead.
 | 
						|
   //
 | 
						|
   return v1x > df2
 | 
						|
      ? boost::math::ibeta(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy())
 | 
						|
      : boost::math::ibetac(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
 | 
						|
}
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType quantile(const complemented2_type<fisher_f_distribution<RealType, Policy>, RealType>& c)
 | 
						|
{
 | 
						|
   static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)";
 | 
						|
   RealType df1 = c.dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = c.dist.degrees_of_freedom2();
 | 
						|
   RealType p = c.param;
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == (detail::check_df(
 | 
						|
            function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
            function, df2, &error_result, Policy())
 | 
						|
         && detail::check_probability(
 | 
						|
            function, p, &error_result, Policy())))
 | 
						|
      return error_result;
 | 
						|
 | 
						|
   RealType x, y;
 | 
						|
 | 
						|
   x = boost::math::ibetac_inv(df1 / 2, df2 / 2, p, &y, Policy());
 | 
						|
 | 
						|
   return df2 * x / (df1 * y);
 | 
						|
}
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType mean(const fisher_f_distribution<RealType, Policy>& dist)
 | 
						|
{ // Mean of F distribution = v.
 | 
						|
   static const char* function = "boost::math::mean(fisher_f_distribution<%1%> const&)";
 | 
						|
   RealType df1 = dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = dist.degrees_of_freedom2();
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == detail::check_df(
 | 
						|
            function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
            function, df2, &error_result, Policy()))
 | 
						|
      return error_result;
 | 
						|
   if(df2 <= 2)
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<RealType>(
 | 
						|
         function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mean.", df2, Policy());
 | 
						|
   }
 | 
						|
   return df2 / (df2 - 2);
 | 
						|
} // mean
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType variance(const fisher_f_distribution<RealType, Policy>& dist)
 | 
						|
{ // Variance of F distribution.
 | 
						|
   static const char* function = "boost::math::variance(fisher_f_distribution<%1%> const&)";
 | 
						|
   RealType df1 = dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = dist.degrees_of_freedom2();
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == detail::check_df(
 | 
						|
            function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
            function, df2, &error_result, Policy()))
 | 
						|
      return error_result;
 | 
						|
   if(df2 <= 4)
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<RealType>(
 | 
						|
         function, "Second degree of freedom was %1% but must be > 4 in order for the distribution to have a valid variance.", df2, Policy());
 | 
						|
   }
 | 
						|
   return 2 * df2 * df2 * (df1 + df2 - 2) / (df1 * (df2 - 2) * (df2 - 2) * (df2 - 4));
 | 
						|
} // variance
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType mode(const fisher_f_distribution<RealType, Policy>& dist)
 | 
						|
{
 | 
						|
   static const char* function = "boost::math::mode(fisher_f_distribution<%1%> const&)";
 | 
						|
   RealType df1 = dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = dist.degrees_of_freedom2();
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == detail::check_df(
 | 
						|
            function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
            function, df2, &error_result, Policy()))
 | 
						|
      return error_result;
 | 
						|
   if(df2 <= 2)
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<RealType>(
 | 
						|
         function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mode.", df2, Policy());
 | 
						|
   }
 | 
						|
   return df2 * (df1 - 2) / (df1 * (df2 + 2));
 | 
						|
}
 | 
						|
 | 
						|
//template <class RealType, class Policy>
 | 
						|
//inline RealType median(const fisher_f_distribution<RealType, Policy>& dist)
 | 
						|
//{ // Median of Fisher F distribution is not defined.
 | 
						|
//  return tools::domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
 | 
						|
//  } // median
 | 
						|
 | 
						|
// Now implemented via quantile(half) in derived accessors.
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType skewness(const fisher_f_distribution<RealType, Policy>& dist)
 | 
						|
{
 | 
						|
   static const char* function = "boost::math::skewness(fisher_f_distribution<%1%> const&)";
 | 
						|
   BOOST_MATH_STD_USING // ADL of std names
 | 
						|
   // See http://mathworld.wolfram.com/F-Distribution.html
 | 
						|
   RealType df1 = dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = dist.degrees_of_freedom2();
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == detail::check_df(
 | 
						|
            function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
            function, df2, &error_result, Policy()))
 | 
						|
      return error_result;
 | 
						|
   if(df2 <= 6)
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<RealType>(
 | 
						|
         function, "Second degree of freedom was %1% but must be > 6 in order for the distribution to have a skewness.", df2, Policy());
 | 
						|
   }
 | 
						|
   return 2 * (df2 + 2 * df1 - 2) * sqrt((2 * df2 - 8) / (df1 * (df2 + df1 - 2))) / (df2 - 6);
 | 
						|
}
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
RealType kurtosis_excess(const fisher_f_distribution<RealType, Policy>& dist);
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType kurtosis(const fisher_f_distribution<RealType, Policy>& dist)
 | 
						|
{
 | 
						|
   return 3 + kurtosis_excess(dist);
 | 
						|
}
 | 
						|
 | 
						|
template <class RealType, class Policy>
 | 
						|
inline RealType kurtosis_excess(const fisher_f_distribution<RealType, Policy>& dist)
 | 
						|
{
 | 
						|
   static const char* function = "boost::math::kurtosis_excess(fisher_f_distribution<%1%> const&)";
 | 
						|
   // See http://mathworld.wolfram.com/F-Distribution.html
 | 
						|
   RealType df1 = dist.degrees_of_freedom1();
 | 
						|
   RealType df2 = dist.degrees_of_freedom2();
 | 
						|
   // Error check:
 | 
						|
   RealType error_result = 0;
 | 
						|
   if(false == detail::check_df(
 | 
						|
            function, df1, &error_result, Policy())
 | 
						|
         && detail::check_df(
 | 
						|
            function, df2, &error_result, Policy()))
 | 
						|
      return error_result;
 | 
						|
   if(df2 <= 8)
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<RealType>(
 | 
						|
         function, "Second degree of freedom was %1% but must be > 8 in order for the distribution to have a kutosis.", df2, Policy());
 | 
						|
   }
 | 
						|
   RealType df2_2 = df2 * df2;
 | 
						|
   RealType df1_2 = df1 * df1;
 | 
						|
   RealType n = -16 + 20 * df2 - 8 * df2_2 + df2_2 * df2 + 44 * df1 - 32 * df2 * df1 + 5 * df2_2 * df1 - 22 * df1_2 + 5 * df2 * df1_2;
 | 
						|
   n *= 12;
 | 
						|
   RealType d = df1 * (df2 - 6) * (df2 - 8) * (df1 + df2 - 2);
 | 
						|
   return n / d;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace math
 | 
						|
} // namespace boost
 | 
						|
 | 
						|
// This include must be at the end, *after* the accessors
 | 
						|
// for this distribution have been defined, in order to
 | 
						|
// keep compilers that support two-phase lookup happy.
 | 
						|
#include <boost/math/distributions/detail/derived_accessors.hpp>
 | 
						|
 | 
						|
#endif // BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
 |