542 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			542 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//---------------------------------------------------------------------------//
 | 
						|
// Copyright (c) 2015 Jakub Szuppe <j.szuppe@gmail.com>
 | 
						|
//
 | 
						|
// Distributed under the Boost Software License, Version 1.0
 | 
						|
// See accompanying file LICENSE_1_0.txt or copy at
 | 
						|
// http://www.boost.org/LICENSE_1_0.txt
 | 
						|
//
 | 
						|
// See http://boostorg.github.com/compute for more information.
 | 
						|
//---------------------------------------------------------------------------//
 | 
						|
 | 
						|
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP
 | 
						|
#define BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <iterator>
 | 
						|
 | 
						|
#include <boost/compute/command_queue.hpp>
 | 
						|
#include <boost/compute/functional.hpp>
 | 
						|
#include <boost/compute/algorithm/inclusive_scan.hpp>
 | 
						|
#include <boost/compute/container/vector.hpp>
 | 
						|
#include <boost/compute/container/detail/scalar.hpp>
 | 
						|
#include <boost/compute/detail/meta_kernel.hpp>
 | 
						|
#include <boost/compute/detail/iterator_range_size.hpp>
 | 
						|
#include <boost/compute/detail/read_write_single_value.hpp>
 | 
						|
#include <boost/compute/type_traits.hpp>
 | 
						|
#include <boost/compute/utility/program_cache.hpp>
 | 
						|
 | 
						|
namespace boost {
 | 
						|
namespace compute {
 | 
						|
namespace detail {
 | 
						|
 | 
						|
/// \internal_
 | 
						|
///
 | 
						|
/// Fills \p new_keys_first with unsigned integer keys generated from vector
 | 
						|
/// of original keys \p keys_first. New keys can be distinguish by simple equality
 | 
						|
/// predicate.
 | 
						|
///
 | 
						|
/// \param keys_first iterator pointing to the first key
 | 
						|
/// \param number_of_keys number of keys
 | 
						|
/// \param predicate binary predicate for key comparison
 | 
						|
/// \param new_keys_first iterator pointing to the new keys vector
 | 
						|
/// \param preferred_work_group_size preferred work group size
 | 
						|
/// \param queue command queue to perform the operation
 | 
						|
///
 | 
						|
/// Binary function \p predicate must take two keys as arguments and
 | 
						|
/// return true only if they are considered the same.
 | 
						|
///
 | 
						|
/// The first new key equals zero and the last equals number of unique keys
 | 
						|
/// minus one.
 | 
						|
///
 | 
						|
/// No local memory usage.
 | 
						|
template<class InputKeyIterator, class BinaryPredicate>
 | 
						|
inline void generate_uint_keys(InputKeyIterator keys_first,
 | 
						|
                               size_t number_of_keys,
 | 
						|
                               BinaryPredicate predicate,
 | 
						|
                               vector<uint_>::iterator new_keys_first,
 | 
						|
                               size_t preferred_work_group_size,
 | 
						|
                               command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<InputKeyIterator>::value_type key_type;
 | 
						|
 | 
						|
    detail::meta_kernel k("reduce_by_key_new_key_flags");
 | 
						|
    k.add_set_arg<const uint_>("count", uint_(number_of_keys));
 | 
						|
 | 
						|
    k <<
 | 
						|
        k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
 | 
						|
        k.decl<uint_>("value") << " = 0;\n" <<
 | 
						|
        "if(gid >= count){\n    return;\n}\n" <<
 | 
						|
        "if(gid > 0){ \n" <<
 | 
						|
        k.decl<key_type>("key") << " = " <<
 | 
						|
                                keys_first[k.var<const uint_>("gid")] << ";\n" <<
 | 
						|
        k.decl<key_type>("previous_key") << " = " <<
 | 
						|
                                keys_first[k.var<const uint_>("gid - 1")] << ";\n" <<
 | 
						|
        "    value = " << predicate(k.var<key_type>("previous_key"),
 | 
						|
                                    k.var<key_type>("key")) <<
 | 
						|
                          " ? 0 : 1;\n" <<
 | 
						|
        "}\n else {\n" <<
 | 
						|
        "    value = 0;\n" <<
 | 
						|
        "}\n" <<
 | 
						|
        new_keys_first[k.var<const uint_>("gid")] << " = value;\n";
 | 
						|
 | 
						|
    const context &context = queue.get_context();
 | 
						|
    kernel kernel = k.compile(context);
 | 
						|
 | 
						|
    size_t work_group_size = preferred_work_group_size;
 | 
						|
    size_t work_groups_no = static_cast<size_t>(
 | 
						|
        std::ceil(float(number_of_keys) / work_group_size)
 | 
						|
    );
 | 
						|
 | 
						|
    queue.enqueue_1d_range_kernel(kernel,
 | 
						|
                                  0,
 | 
						|
                                  work_groups_no * work_group_size,
 | 
						|
                                  work_group_size);
 | 
						|
 | 
						|
    inclusive_scan(new_keys_first, new_keys_first + number_of_keys,
 | 
						|
                   new_keys_first, queue);
 | 
						|
}
 | 
						|
 | 
						|
/// \internal_
 | 
						|
/// Calculate carry-out for each work group.
 | 
						|
/// Carry-out is a pair of the last key processed by a work group and sum of all
 | 
						|
/// values under this key in this work group.
 | 
						|
template<class InputValueIterator, class OutputValueIterator, class BinaryFunction>
 | 
						|
inline void carry_outs(vector<uint_>::iterator keys_first,
 | 
						|
                       InputValueIterator values_first,
 | 
						|
                       size_t count,
 | 
						|
                       vector<uint_>::iterator carry_out_keys_first,
 | 
						|
                       OutputValueIterator carry_out_values_first,
 | 
						|
                       BinaryFunction function,
 | 
						|
                       size_t work_group_size,
 | 
						|
                       command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<OutputValueIterator>::value_type value_out_type;
 | 
						|
 | 
						|
    detail::meta_kernel k("reduce_by_key_with_scan_carry_outs");
 | 
						|
    k.add_set_arg<const uint_>("count", uint_(count));
 | 
						|
    size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys");
 | 
						|
    size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals");
 | 
						|
 | 
						|
    k <<
 | 
						|
        k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
 | 
						|
        k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" <<
 | 
						|
        k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
 | 
						|
        k.decl<const uint_>("group_id") << " = get_group_id(0);\n" <<
 | 
						|
 | 
						|
        k.decl<uint_>("key") << ";\n" <<
 | 
						|
        k.decl<value_out_type>("value") << ";\n" <<
 | 
						|
        "if(gid < count){\n" <<
 | 
						|
            k.var<uint_>("key") << " = " <<
 | 
						|
                keys_first[k.var<const uint_>("gid")] << ";\n" <<
 | 
						|
            k.var<value_out_type>("value") << " = " <<
 | 
						|
                values_first[k.var<const uint_>("gid")] << ";\n" <<
 | 
						|
            "lkeys[lid] = key;\n" <<
 | 
						|
            "lvals[lid] = value;\n" <<
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        // Calculate carry out for each work group by performing Hillis/Steele scan
 | 
						|
        // where only last element (key-value pair) is saved
 | 
						|
        k.decl<value_out_type>("result") << " = value;\n" <<
 | 
						|
        k.decl<uint_>("other_key") << ";\n" <<
 | 
						|
        k.decl<value_out_type>("other_value") << ";\n" <<
 | 
						|
 | 
						|
        "for(" << k.decl<uint_>("offset") << " = 1; " <<
 | 
						|
                  "offset < wg_size; offset *= 2){\n"
 | 
						|
        "    barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
        "    if(lid >= offset){\n"
 | 
						|
        "        other_key = lkeys[lid - offset];\n" <<
 | 
						|
        "        if(other_key == key){\n" <<
 | 
						|
        "            other_value = lvals[lid - offset];\n" <<
 | 
						|
        "            result = " << function(k.var<value_out_type>("result"),
 | 
						|
                                            k.var<value_out_type>("other_value")) << ";\n" <<
 | 
						|
        "        }\n" <<
 | 
						|
        "    }\n" <<
 | 
						|
        "    barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
        "    lvals[lid] = result;\n" <<
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        // save carry out
 | 
						|
        "if(lid == (wg_size - 1)){\n" <<
 | 
						|
        carry_out_keys_first[k.var<const uint_>("group_id")] << " = key;\n" <<
 | 
						|
        carry_out_values_first[k.var<const uint_>("group_id")] << " = result;\n" <<
 | 
						|
        "}\n";
 | 
						|
 | 
						|
    size_t work_groups_no = static_cast<size_t>(
 | 
						|
        std::ceil(float(count) / work_group_size)
 | 
						|
    );
 | 
						|
 | 
						|
    const context &context = queue.get_context();
 | 
						|
    kernel kernel = k.compile(context);
 | 
						|
    kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size));
 | 
						|
    kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size));
 | 
						|
 | 
						|
    queue.enqueue_1d_range_kernel(kernel,
 | 
						|
                                  0,
 | 
						|
                                  work_groups_no * work_group_size,
 | 
						|
                                  work_group_size);
 | 
						|
}
 | 
						|
 | 
						|
/// \internal_
 | 
						|
/// Calculate carry-in by performing inclusive scan by key on carry-outs vector.
 | 
						|
template<class OutputValueIterator, class BinaryFunction>
 | 
						|
inline void carry_ins(vector<uint_>::iterator carry_out_keys_first,
 | 
						|
                      OutputValueIterator carry_out_values_first,
 | 
						|
                      OutputValueIterator carry_in_values_first,
 | 
						|
                      size_t carry_out_size,
 | 
						|
                      BinaryFunction function,
 | 
						|
                      size_t work_group_size,
 | 
						|
                      command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<OutputValueIterator>::value_type value_out_type;
 | 
						|
 | 
						|
    uint_ values_pre_work_item = static_cast<uint_>(
 | 
						|
        std::ceil(float(carry_out_size) / work_group_size)
 | 
						|
    );
 | 
						|
 | 
						|
    detail::meta_kernel k("reduce_by_key_with_scan_carry_ins");
 | 
						|
    k.add_set_arg<const uint_>("carry_out_size", uint_(carry_out_size));
 | 
						|
    k.add_set_arg<const uint_>("values_per_work_item", values_pre_work_item);
 | 
						|
    size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys");
 | 
						|
    size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals");
 | 
						|
 | 
						|
    k <<
 | 
						|
        k.decl<uint_>("id") << " = get_global_id(0) * values_per_work_item;\n" <<
 | 
						|
        k.decl<uint_>("idx") << " = id;\n" <<
 | 
						|
        k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" <<
 | 
						|
        k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
 | 
						|
        k.decl<const uint_>("group_id") << " = get_group_id(0);\n" <<
 | 
						|
 | 
						|
        k.decl<uint_>("key") << ";\n" <<
 | 
						|
        k.decl<value_out_type>("value") << ";\n" <<
 | 
						|
        k.decl<uint_>("previous_key") << ";\n" <<
 | 
						|
        k.decl<value_out_type>("result") << ";\n" <<
 | 
						|
 | 
						|
        "if(id < carry_out_size){\n" <<
 | 
						|
            k.var<uint_>("previous_key") << " = " <<
 | 
						|
                carry_out_keys_first[k.var<const uint_>("id")] << ";\n" <<
 | 
						|
            k.var<value_out_type>("result") << " = " <<
 | 
						|
                carry_out_values_first[k.var<const uint_>("id")] << ";\n" <<
 | 
						|
            carry_in_values_first[k.var<const uint_>("id")] << " = result;\n" <<
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        k.decl<const uint_>("end") << " = (id + values_per_work_item) <= carry_out_size" <<
 | 
						|
                                      " ? (values_per_work_item + id) :  carry_out_size;\n" <<
 | 
						|
 | 
						|
        "for(idx = idx + 1; idx < end; idx += 1){\n" <<
 | 
						|
        "    key = " << carry_out_keys_first[k.var<const uint_>("idx")] << ";\n" <<
 | 
						|
        "    value = " << carry_out_values_first[k.var<const uint_>("idx")] << ";\n" <<
 | 
						|
        "    if(previous_key == key){\n" <<
 | 
						|
        "        result = " << function(k.var<value_out_type>("result"),
 | 
						|
                                        k.var<value_out_type>("value")) << ";\n" <<
 | 
						|
        "    }\n else { \n" <<
 | 
						|
        "        result = value;\n"
 | 
						|
        "    }\n" <<
 | 
						|
        "    " << carry_in_values_first[k.var<const uint_>("idx")] << " = result;\n" <<
 | 
						|
        "    previous_key = key;\n"
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        // save the last key and result to local memory
 | 
						|
        "lkeys[lid] = previous_key;\n" <<
 | 
						|
        "lvals[lid] = result;\n" <<
 | 
						|
 | 
						|
        // Hillis/Steele scan
 | 
						|
        "for(" << k.decl<uint_>("offset") << " = 1; " <<
 | 
						|
                  "offset < wg_size; offset *= 2){\n"
 | 
						|
        "    barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
        "    if(lid >= offset){\n"
 | 
						|
        "        key = lkeys[lid - offset];\n" <<
 | 
						|
        "        if(previous_key == key){\n" <<
 | 
						|
        "            value = lvals[lid - offset];\n" <<
 | 
						|
        "            result = " << function(k.var<value_out_type>("result"),
 | 
						|
                                            k.var<value_out_type>("value")) << ";\n" <<
 | 
						|
        "        }\n" <<
 | 
						|
        "    }\n" <<
 | 
						|
        "    barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
        "    lvals[lid] = result;\n" <<
 | 
						|
        "}\n" <<
 | 
						|
        "barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
 | 
						|
        "if(lid > 0){\n" <<
 | 
						|
        // load key-value reduced by previous work item
 | 
						|
        "    previous_key = lkeys[lid - 1];\n" <<
 | 
						|
        "    result       = lvals[lid - 1];\n" <<
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        // add key-value reduced by previous work item
 | 
						|
        "for(idx = id; idx < id + values_per_work_item; idx += 1){\n" <<
 | 
						|
        // make sure all carry-ins are saved in global memory
 | 
						|
        "    barrier( CLK_GLOBAL_MEM_FENCE );\n" <<
 | 
						|
        "    if(lid > 0 && idx < carry_out_size) {\n"
 | 
						|
        "        key = " << carry_out_keys_first[k.var<const uint_>("idx")] << ";\n" <<
 | 
						|
        "        value = " << carry_in_values_first[k.var<const uint_>("idx")] << ";\n" <<
 | 
						|
        "        if(previous_key == key){\n" <<
 | 
						|
        "            value = " << function(k.var<value_out_type>("result"),
 | 
						|
                                           k.var<value_out_type>("value")) << ";\n" <<
 | 
						|
        "        }\n" <<
 | 
						|
        "        " << carry_in_values_first[k.var<const uint_>("idx")] << " = value;\n" <<
 | 
						|
        "    }\n" <<
 | 
						|
        "}\n";
 | 
						|
 | 
						|
 | 
						|
    const context &context = queue.get_context();
 | 
						|
    kernel kernel = k.compile(context);
 | 
						|
    kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size));
 | 
						|
    kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size));
 | 
						|
 | 
						|
    queue.enqueue_1d_range_kernel(kernel,
 | 
						|
                                  0,
 | 
						|
                                  work_group_size,
 | 
						|
                                  work_group_size);
 | 
						|
}
 | 
						|
 | 
						|
/// \internal_
 | 
						|
///
 | 
						|
/// Perform final reduction by key. Each work item:
 | 
						|
/// 1. Perform local work-group reduction (Hillis/Steele scan)
 | 
						|
/// 2. Add carry-in (if keys are right)
 | 
						|
/// 3. Save reduced value if next key is different than processed one
 | 
						|
template<class InputKeyIterator, class InputValueIterator,
 | 
						|
         class OutputKeyIterator, class OutputValueIterator,
 | 
						|
         class BinaryFunction>
 | 
						|
inline void final_reduction(InputKeyIterator keys_first,
 | 
						|
                            InputValueIterator values_first,
 | 
						|
                            OutputKeyIterator keys_result,
 | 
						|
                            OutputValueIterator values_result,
 | 
						|
                            size_t count,
 | 
						|
                            BinaryFunction function,
 | 
						|
                            vector<uint_>::iterator new_keys_first,
 | 
						|
                            vector<uint_>::iterator carry_in_keys_first,
 | 
						|
                            OutputValueIterator carry_in_values_first,
 | 
						|
                            size_t carry_in_size,
 | 
						|
                            size_t work_group_size,
 | 
						|
                            command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<OutputValueIterator>::value_type value_out_type;
 | 
						|
 | 
						|
    detail::meta_kernel k("reduce_by_key_with_scan_final_reduction");
 | 
						|
    k.add_set_arg<const uint_>("count", uint_(count));
 | 
						|
    size_t local_keys_arg = k.add_arg<uint_ *>(memory_object::local_memory, "lkeys");
 | 
						|
    size_t local_vals_arg = k.add_arg<value_out_type *>(memory_object::local_memory, "lvals");
 | 
						|
 | 
						|
    k <<
 | 
						|
        k.decl<const uint_>("gid") << " = get_global_id(0);\n" <<
 | 
						|
        k.decl<const uint_>("wg_size") << " = get_local_size(0);\n" <<
 | 
						|
        k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
 | 
						|
        k.decl<const uint_>("group_id") << " = get_group_id(0);\n" <<
 | 
						|
 | 
						|
        k.decl<uint_>("key") << ";\n" <<
 | 
						|
        k.decl<value_out_type>("value") << ";\n"
 | 
						|
 | 
						|
        "if(gid < count){\n" <<
 | 
						|
            k.var<uint_>("key") << " = " <<
 | 
						|
                new_keys_first[k.var<const uint_>("gid")] << ";\n" <<
 | 
						|
            k.var<value_out_type>("value") << " = " <<
 | 
						|
                values_first[k.var<const uint_>("gid")] << ";\n" <<
 | 
						|
            "lkeys[lid] = key;\n" <<
 | 
						|
            "lvals[lid] = value;\n" <<
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        // Hillis/Steele scan
 | 
						|
        k.decl<value_out_type>("result") << " = value;\n" <<
 | 
						|
        k.decl<uint_>("other_key") << ";\n" <<
 | 
						|
        k.decl<value_out_type>("other_value") << ";\n" <<
 | 
						|
 | 
						|
        "for(" << k.decl<uint_>("offset") << " = 1; " <<
 | 
						|
                 "offset < wg_size ; offset *= 2){\n"
 | 
						|
        "    barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
        "    if(lid >= offset) {\n" <<
 | 
						|
        "        other_key = lkeys[lid - offset];\n" <<
 | 
						|
        "        if(other_key == key){\n" <<
 | 
						|
        "            other_value = lvals[lid - offset];\n" <<
 | 
						|
        "            result = " << function(k.var<value_out_type>("result"),
 | 
						|
                                            k.var<value_out_type>("other_value")) << ";\n" <<
 | 
						|
        "        }\n" <<
 | 
						|
        "    }\n" <<
 | 
						|
        "    barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | 
						|
        "    lvals[lid] = result;\n" <<
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        "if(gid >= count) {\n return;\n};\n" <<
 | 
						|
 | 
						|
        k.decl<const bool>("save") << " = (gid < (count - 1)) ?"
 | 
						|
                                   << new_keys_first[k.var<const uint_>("gid + 1")] << " != key" <<
 | 
						|
                                   ": true;\n" <<
 | 
						|
 | 
						|
        // Add carry in
 | 
						|
        k.decl<uint_>("carry_in_key") << ";\n" <<
 | 
						|
        "if(group_id > 0 && save) {\n" <<
 | 
						|
        "    carry_in_key = " << carry_in_keys_first[k.var<const uint_>("group_id - 1")] << ";\n" <<
 | 
						|
        "    if(key == carry_in_key){\n" <<
 | 
						|
        "        other_value = " << carry_in_values_first[k.var<const uint_>("group_id - 1")] << ";\n" <<
 | 
						|
        "        result = " << function(k.var<value_out_type>("result"),
 | 
						|
                                        k.var<value_out_type>("other_value")) << ";\n" <<
 | 
						|
        "    }\n" <<
 | 
						|
        "}\n" <<
 | 
						|
 | 
						|
        // Save result only if the next key is different or it's the last element.
 | 
						|
        "if(save){\n" <<
 | 
						|
        keys_result[k.var<uint_>("key")] << " = " << keys_first[k.var<const uint_>("gid")] << ";\n" <<
 | 
						|
        values_result[k.var<uint_>("key")] << " = result;\n" <<
 | 
						|
        "}\n"
 | 
						|
        ;
 | 
						|
 | 
						|
    size_t work_groups_no = static_cast<size_t>(
 | 
						|
        std::ceil(float(count) / work_group_size)
 | 
						|
    );
 | 
						|
 | 
						|
    const context &context = queue.get_context();
 | 
						|
    kernel kernel = k.compile(context);
 | 
						|
    kernel.set_arg(local_keys_arg, local_buffer<uint_>(work_group_size));
 | 
						|
    kernel.set_arg(local_vals_arg, local_buffer<value_out_type>(work_group_size));
 | 
						|
 | 
						|
    queue.enqueue_1d_range_kernel(kernel,
 | 
						|
                                  0,
 | 
						|
                                  work_groups_no * work_group_size,
 | 
						|
                                  work_group_size);
 | 
						|
}
 | 
						|
 | 
						|
/// \internal_
 | 
						|
/// Returns preferred work group size for reduce by key with scan algorithm.
 | 
						|
template<class KeyType, class ValueType>
 | 
						|
inline size_t get_work_group_size(const device& device)
 | 
						|
{
 | 
						|
    std::string cache_key = std::string("__boost_reduce_by_key_with_scan")
 | 
						|
        + "k_" + type_name<KeyType>() + "_v_" + type_name<ValueType>();
 | 
						|
 | 
						|
    // load parameters
 | 
						|
    boost::shared_ptr<parameter_cache> parameters =
 | 
						|
        detail::parameter_cache::get_global_cache(device);
 | 
						|
 | 
						|
    return (std::max)(
 | 
						|
        static_cast<size_t>(parameters->get(cache_key, "wgsize", 256)),
 | 
						|
        static_cast<size_t>(device.get_info<CL_DEVICE_MAX_WORK_GROUP_SIZE>())
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
/// \internal_
 | 
						|
///
 | 
						|
/// 1. For each work group carry-out value is calculated (it's done by key-oriented
 | 
						|
/// Hillis/Steele scan). Carry-out is a pair of the last key processed by work
 | 
						|
/// group and sum of all values under this key in work group.
 | 
						|
/// 2. From every carry-out carry-in is calculated by performing inclusive scan
 | 
						|
/// by key.
 | 
						|
/// 3. Final reduction by key is performed (key-oriented Hillis/Steele scan),
 | 
						|
/// carry-in values are added where needed.
 | 
						|
template<class InputKeyIterator, class InputValueIterator,
 | 
						|
         class OutputKeyIterator, class OutputValueIterator,
 | 
						|
         class BinaryFunction, class BinaryPredicate>
 | 
						|
inline size_t reduce_by_key_with_scan(InputKeyIterator keys_first,
 | 
						|
                                      InputKeyIterator keys_last,
 | 
						|
                                      InputValueIterator values_first,
 | 
						|
                                      OutputKeyIterator keys_result,
 | 
						|
                                      OutputValueIterator values_result,
 | 
						|
                                      BinaryFunction function,
 | 
						|
                                      BinaryPredicate predicate,
 | 
						|
                                      command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<InputValueIterator>::value_type value_type;
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<InputKeyIterator>::value_type key_type;
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<OutputValueIterator>::value_type value_out_type;
 | 
						|
 | 
						|
    const context &context = queue.get_context();
 | 
						|
    size_t count = detail::iterator_range_size(keys_first, keys_last);
 | 
						|
 | 
						|
    if(count == 0){
 | 
						|
        return size_t(0);
 | 
						|
    }
 | 
						|
 | 
						|
    const device &device = queue.get_device();
 | 
						|
    size_t work_group_size = get_work_group_size<value_type, key_type>(device);
 | 
						|
 | 
						|
    // Replace original key with unsigned integer keys generated based on given
 | 
						|
    // predicate. New key is also an index for keys_result and values_result vectors,
 | 
						|
    // which points to place where reduced value should be saved.
 | 
						|
    vector<uint_> new_keys(count, context);
 | 
						|
    vector<uint_>::iterator new_keys_first = new_keys.begin();
 | 
						|
    generate_uint_keys(keys_first, count, predicate, new_keys_first,
 | 
						|
                       work_group_size, queue);
 | 
						|
 | 
						|
    // Calculate carry-out and carry-in vectors size
 | 
						|
    const size_t carry_out_size = static_cast<size_t>(
 | 
						|
           std::ceil(float(count) / work_group_size)
 | 
						|
    );
 | 
						|
    vector<uint_> carry_out_keys(carry_out_size, context);
 | 
						|
    vector<value_out_type> carry_out_values(carry_out_size, context);
 | 
						|
    carry_outs(new_keys_first, values_first, count, carry_out_keys.begin(),
 | 
						|
               carry_out_values.begin(), function, work_group_size, queue);
 | 
						|
 | 
						|
    vector<value_out_type> carry_in_values(carry_out_size, context);
 | 
						|
    carry_ins(carry_out_keys.begin(), carry_out_values.begin(),
 | 
						|
              carry_in_values.begin(), carry_out_size, function, work_group_size,
 | 
						|
              queue);
 | 
						|
 | 
						|
    final_reduction(keys_first, values_first, keys_result, values_result,
 | 
						|
                    count, function, new_keys_first, carry_out_keys.begin(),
 | 
						|
                    carry_in_values.begin(), carry_out_size, work_group_size,
 | 
						|
                    queue);
 | 
						|
 | 
						|
    const size_t result = read_single_value<uint_>(new_keys.get_buffer(),
 | 
						|
                                                   count - 1, queue);
 | 
						|
    return result + 1;
 | 
						|
}
 | 
						|
 | 
						|
/// \internal_
 | 
						|
/// Return true if requirements for running reduce by key with scan on given
 | 
						|
/// device are met (at least one work group of preferred size can be run).
 | 
						|
template<class InputKeyIterator, class InputValueIterator,
 | 
						|
         class OutputKeyIterator, class OutputValueIterator>
 | 
						|
bool reduce_by_key_with_scan_requirements_met(InputKeyIterator keys_first,
 | 
						|
                                              InputValueIterator values_first,
 | 
						|
                                              OutputKeyIterator keys_result,
 | 
						|
                                              OutputValueIterator values_result,
 | 
						|
                                              const size_t count,
 | 
						|
                                              command_queue &queue)
 | 
						|
{
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<InputValueIterator>::value_type value_type;
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<InputKeyIterator>::value_type key_type;
 | 
						|
    typedef typename
 | 
						|
        std::iterator_traits<OutputValueIterator>::value_type value_out_type;
 | 
						|
 | 
						|
    (void) keys_first;
 | 
						|
    (void) values_first;
 | 
						|
    (void) keys_result;
 | 
						|
    (void) values_result;
 | 
						|
 | 
						|
    const device &device = queue.get_device();
 | 
						|
    // device must have dedicated local memory storage
 | 
						|
    if(device.get_info<CL_DEVICE_LOCAL_MEM_TYPE>() != CL_LOCAL)
 | 
						|
    {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // local memory size in bytes (per compute unit)
 | 
						|
    const size_t local_mem_size = device.get_info<CL_DEVICE_LOCAL_MEM_SIZE>();
 | 
						|
 | 
						|
    // preferred work group size
 | 
						|
    size_t work_group_size = get_work_group_size<key_type, value_type>(device);
 | 
						|
 | 
						|
    // local memory size needed to perform parallel reduction
 | 
						|
    size_t required_local_mem_size = 0;
 | 
						|
    // keys size
 | 
						|
    required_local_mem_size += sizeof(uint_) * work_group_size;
 | 
						|
    // reduced values size
 | 
						|
    required_local_mem_size += sizeof(value_out_type) * work_group_size;
 | 
						|
 | 
						|
    return (required_local_mem_size <= local_mem_size);
 | 
						|
}
 | 
						|
 | 
						|
} // end detail namespace
 | 
						|
} // end compute namespace
 | 
						|
} // end boost namespace
 | 
						|
 | 
						|
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_BY_KEY_WITH_SCAN_HPP
 |