1122 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1122 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| qra64.c 
 | |
| Encoding/decoding functions for the QRA64 mode
 | |
| 
 | |
| (c) 2016 - Nico Palermo, IV3NWV
 | |
| 
 | |
| -------------------------------------------------------------------------------
 | |
| 
 | |
|    qracodes is free software: you can redistribute it and/or modify
 | |
|    it under the terms of the GNU General Public License as published by
 | |
|    the Free Software Foundation, either version 3 of the License, or
 | |
|    (at your option) any later version.
 | |
|    qracodes is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|    GNU General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU General Public License
 | |
|    along with qracodes source distribution.  
 | |
|    If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| -----------------------------------------------------------------------------
 | |
| 
 | |
| QRA code used in this sowftware release:
 | |
| 
 | |
| QRA13_64_64_IRR_E: K=13 N=64 Q=64 irregular QRA code (defined in 
 | |
| qra13_64_64_irr_e.h /.c)
 | |
| 
 | |
| Codes with K=13 are designed to include a CRC as the 13th information symbol
 | |
| and improve the code UER (Undetected Error Rate).
 | |
| The CRC symbol is not sent along the channel (the codes are punctured) and the 
 | |
| resulting code is a (12,63) code 
 | |
| */
 | |
| //----------------------------------------------------------------------------
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "qra64.h"
 | |
| #include "../qracodes/qracodes.h"
 | |
| #include "../qracodes/qra13_64_64_irr_e.h"
 | |
| #include "../qracodes/pdmath.h"
 | |
| #include "../qracodes/normrnd.h"
 | |
| 
 | |
| // Code parameters of the QRA64 mode 
 | |
| #define QRA64_CODE  qra_13_64_64_irr_e
 | |
| #define QRA64_NMSG  218        // Must much value indicated in QRA64_CODE.NMSG
 | |
| 
 | |
| #define QRA64_KC (QRA64_K+1)   // Information symbols (crc included)
 | |
| #define QRA64_NC (QRA64_N+1)   // Codeword length (as defined in the code)
 | |
| #define QRA64_NITER 100	       // max number of iterations per decode
 | |
| 
 | |
| // static functions declarations ----------------------------------------------
 | |
| static int  calc_crc6(const int *x, int sz);
 | |
| static void ix_mask(float *dst, const float *src, const int *mask, 
 | |
| 		    const int *x);
 | |
| static int qra64_decode_attempts(qra64codec *pcodec, int *xdec, const float *ix);
 | |
| static int qra64_do_decode(int *x, const float *pix, const int *ap_mask, 
 | |
| 			    const int *ap_x);
 | |
| static float qra64_fastfading_estim_noise_std(
 | |
| 				const float *rxen, 
 | |
| 				const float esnometric, 
 | |
| 				const int submode);
 | |
| 
 | |
| static void qra64_fastfading_intrinsics(
 | |
| 				float *pix, 
 | |
| 				const float *rxen, 
 | |
| 				const float *hptr, 
 | |
| 				const int    hlen, 
 | |
| 				const float sigma,
 | |
| 				const float EsNoMetric, 
 | |
| 				const int submode);
 | |
| 
 | |
| static float qra64_fastfading_msg_esno(
 | |
| 			const int *ydec,
 | |
| 			const float *rxen, 
 | |
| 			const float sigma,
 | |
| 			const float EsNoMetric,
 | |
| 			const int hlen, 
 | |
| 			const int submode);
 | |
| 
 | |
| 
 | |
| // a-priori information masks for fields in JT65-like msgs --------------------
 | |
| 
 | |
| // when defined limits the AP masks to reduce the false decode rate
 | |
| #define LIMIT_AP_MASKS
 | |
| 
 | |
| #ifdef LIMIT_AP_MASKS
 | |
| #define MASK_CQQRZ      0xFFFFFFC 
 | |
| #define MASK_CALL1      0xFFFFFFC
 | |
| #define MASK_CALL2      0xFFFFFFC
 | |
| #define MASK_GRIDFULL	0x3FFC
 | |
| #define MASK_GRIDFULL12	0x3FFC	  
 | |
| #define MASK_GRIDBIT	0x8000	  
 | |
| #else
 | |
| #define MASK_CQQRZ      0xFFFFFFC 
 | |
| #define MASK_CALL1      0xFFFFFFF
 | |
| #define MASK_CALL2      0xFFFFFFF
 | |
| #define MASK_GRIDFULL	0xFFFF
 | |
| #define MASK_GRIDFULL12	0x3FFC	  
 | |
| #define MASK_GRIDBIT	0x8000	  // b[15] is 1 for free text, 0 otherwise
 | |
| #endif
 | |
| 
 | |
| // ----------------------------------------------------------------------------
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| qra64codec *qra64_init(int flags)
 | |
| {
 | |
| 
 | |
|   // Eb/No value for which we optimize the decoder metric
 | |
|   const float EbNodBMetric = 2.8f; 
 | |
|   const float EbNoMetric   = (float)pow(10,EbNodBMetric/10);
 | |
|   const float R = 1.0f*(QRA64_KC)/(QRA64_NC);	
 | |
| 
 | |
|   qra64codec *pcodec = (qra64codec*)malloc(sizeof(qra64codec));
 | |
| 
 | |
|   if (!pcodec)
 | |
|     return 0;	// can't allocate memory
 | |
| 
 | |
|   pcodec->decEsNoMetric   = 1.0f*QRA64_m*R*EbNoMetric;
 | |
|   pcodec->apflags			= flags;
 | |
| 
 | |
|   memset(pcodec->apmsg_set,0,APTYPE_SIZE*sizeof(int));
 | |
| 
 | |
|   if (flags==QRA_NOAP)
 | |
|     return pcodec;
 | |
| 
 | |
|   // for QRA_USERAP and QRA_AUTOAP modes we always enable [CQ/QRZ ? ?] mgs look-up.
 | |
|   // encode CQ/QRZ AP messages 
 | |
|   // NOTE: Here we handle only CQ and QRZ msgs. 
 | |
|   // 'CQ nnn', 'CQ DX' and 'DE' msgs will be handled by the decoder 
 | |
|   // as messages with no a-priori knowledge
 | |
|   qra64_apset(pcodec, CALL_CQ, 0, GRID_BLANK, APTYPE_CQQRZ);
 | |
| 
 | |
|   // initialize masks for decoding with a-priori information
 | |
|   encodemsg_jt65(pcodec->apmask_cqqrz,     MASK_CQQRZ, 0, MASK_GRIDBIT);     
 | |
|   encodemsg_jt65(pcodec->apmask_cqqrz_ooo, MASK_CQQRZ, 0, MASK_GRIDFULL);
 | |
|   encodemsg_jt65(pcodec->apmask_call1,     MASK_CALL1, 0, MASK_GRIDBIT);
 | |
|   encodemsg_jt65(pcodec->apmask_call1_ooo, MASK_CALL1, 0, MASK_GRIDFULL);
 | |
|   encodemsg_jt65(pcodec->apmask_call2,     0, MASK_CALL2, MASK_GRIDBIT);
 | |
|   encodemsg_jt65(pcodec->apmask_call2_ooo, 0, MASK_CALL2, MASK_GRIDFULL);
 | |
|   encodemsg_jt65(pcodec->apmask_call1_call2,     MASK_CALL1,MASK_CALL2, MASK_GRIDBIT);
 | |
|   encodemsg_jt65(pcodec->apmask_call1_call2_grid,MASK_CALL1,MASK_CALL2, MASK_GRIDFULL12);
 | |
|   encodemsg_jt65(pcodec->apmask_cq_call2,     MASK_CQQRZ, MASK_CALL2, MASK_GRIDBIT);
 | |
|   encodemsg_jt65(pcodec->apmask_cq_call2_ooo, MASK_CQQRZ, MASK_CALL2, MASK_GRIDFULL12);
 | |
| 
 | |
|   return pcodec;
 | |
| }
 | |
| 
 | |
| void qra64_close(qra64codec *pcodec)
 | |
| {
 | |
| 	free(pcodec);
 | |
| }
 | |
| 
 | |
| int qra64_apset(qra64codec *pcodec, const int mycall, const int hiscall, const int grid, const int aptype)
 | |
| {
 | |
| // Set decoder a-priori knowledge accordingly to the type of the message to look up for
 | |
| // arguments:
 | |
| //		pcodec    = pointer to a qra64codec data structure as returned by qra64_init
 | |
| //		mycall    = mycall to look for
 | |
| //		hiscall   = hiscall to look for
 | |
| //		grid      = grid to look for
 | |
| //		aptype    = define and masks the type of AP to be set accordingly to the following:
 | |
| //			APTYPE_CQQRZ     set [cq/qrz ?       ?/blank]
 | |
| //			APTYPE_MYCALL    set [mycall ?       ?/blank]
 | |
| //			APTYPE_HISCALL   set [?      hiscall ?/blank]
 | |
| //			APTYPE_BOTHCALLS set [mycall hiscall ?]
 | |
| //			APTYPE_FULL		 set [mycall hiscall grid]
 | |
| //			APTYPE_CQHISCALL set [cq/qrz hiscall ?/blank] and [cq/qrz hiscall grid]
 | |
| // returns:
 | |
| //		0   on success
 | |
| //      -1  when qra64_init was called with the QRA_NOAP flag
 | |
| //		-2  invalid apytpe
 | |
| 
 | |
| 	if (pcodec->apflags==QRA_NOAP)
 | |
| 		return -1;
 | |
| 
 | |
| 	switch (aptype) {
 | |
| 		case APTYPE_CQQRZ:
 | |
| 			encodemsg_jt65(pcodec->apmsg_cqqrz,  CALL_CQ, 0, GRID_BLANK);
 | |
| 			break;
 | |
| 		case APTYPE_MYCALL:
 | |
| 			encodemsg_jt65(pcodec->apmsg_call1,  mycall,  0, GRID_BLANK);
 | |
| 			break;
 | |
| 		case APTYPE_HISCALL:
 | |
| 			encodemsg_jt65(pcodec->apmsg_call2,  0, hiscall, GRID_BLANK);
 | |
| 			break;
 | |
| 		case APTYPE_BOTHCALLS:
 | |
| 			encodemsg_jt65(pcodec->apmsg_call1_call2,  mycall, hiscall, GRID_BLANK);
 | |
| 			break;
 | |
| 		case APTYPE_FULL:
 | |
| 			encodemsg_jt65(pcodec->apmsg_call1_call2_grid,  mycall, hiscall, grid);
 | |
| 			break;
 | |
| 		case APTYPE_CQHISCALL:
 | |
| 			encodemsg_jt65(pcodec->apmsg_cq_call2,      CALL_CQ, hiscall, GRID_BLANK);
 | |
| 			encodemsg_jt65(pcodec->apmsg_cq_call2_grid, CALL_CQ, hiscall, grid);
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -2;	// invalid ap type
 | |
| 		}
 | |
| 
 | |
| 	  pcodec->apmsg_set[aptype]=1;	// signal the decoder to look-up for the specified type
 | |
| 
 | |
| 
 | |
| 	  return 0;
 | |
| }
 | |
| void qra64_apdisable(qra64codec *pcodec, const int aptype)
 | |
| {
 | |
| 	if (pcodec->apflags==QRA_NOAP)
 | |
| 		return;
 | |
| 
 | |
| 	if (aptype<APTYPE_CQQRZ || aptype>=APTYPE_SIZE)
 | |
| 		return;
 | |
| 
 | |
| 	pcodec->apmsg_set[aptype] = 0;	//  signal the decoder not to look-up to the specified type
 | |
| }
 | |
| 
 | |
| void qra64_encode(qra64codec *pcodec, int *y, const int *x)
 | |
| {
 | |
|   int encx[QRA64_KC];	// encoder input buffer
 | |
|   int ency[QRA64_NC];	// encoder output buffer
 | |
| 
 | |
|   int hiscall,mycall,grid;
 | |
| 
 | |
|   memcpy(encx,x,QRA64_K*sizeof(int));		// Copy input to encoder buffer
 | |
|   encx[QRA64_K]=calc_crc6(encx,QRA64_K);	// Compute and add crc symbol
 | |
|   qra_encode(&QRA64_CODE, ency, encx);	 // encode msg+crc using given QRA code
 | |
| 
 | |
|   // copy codeword to output puncturing the crc symbol 
 | |
|   memcpy(y,ency,QRA64_K*sizeof(int));		// copy information symbols 
 | |
|   memcpy(y+QRA64_K,ency+QRA64_KC,QRA64_C*sizeof(int)); // copy parity symbols 
 | |
| 
 | |
|   if (pcodec->apflags!=QRA_AUTOAP)
 | |
|     return;
 | |
| 
 | |
|   // Here we handle the QRA_AUTOAP mode --------------------------------------------
 | |
| 
 | |
|   // When a [hiscall mycall ?] msg is detected we instruct the decoder
 | |
|   // to look for [mycall hiscall ?] msgs
 | |
|   // otherwise when a [cq mycall ?] msg is sent we reset the APTYPE_BOTHCALLS 
 | |
| 
 | |
|   // look if the msg sent is a std type message (bit15 of grid field = 0)
 | |
|   if ((x[9]&0x80)==1)
 | |
|     return;	// no, it's a text message, nothing to do
 | |
| 
 | |
|   // It's a [hiscall mycall grid] message
 | |
| 
 | |
|   // We assume that mycall is our call (but we don't check it)
 | |
|   // hiscall the station we are calling or a general call (CQ/QRZ/etc..)
 | |
|   decodemsg_jt65(&hiscall,&mycall,&grid,x);
 | |
| 
 | |
| 
 | |
|   if ((hiscall>=CALL_CQ && hiscall<=CALL_CQ999) || hiscall==CALL_CQDX || 
 | |
|       hiscall==CALL_DE) {
 | |
| 	// tell the decoder to look for msgs directed to us
 | |
| 	qra64_apset(pcodec,mycall,0,0,APTYPE_MYCALL);
 | |
|     // We are making a general call and don't know who might reply 
 | |
|     // Reset APTYPE_BOTHCALLS so decoder won't look for [mycall hiscall ?] msgs
 | |
|     qra64_apdisable(pcodec,APTYPE_BOTHCALLS);
 | |
|   } else {
 | |
|     // We are replying to someone named hiscall
 | |
|     // Set APTYPE_BOTHCALLS so decoder will try for [mycall hiscall ?] msgs
 | |
|     qra64_apset(pcodec,mycall, hiscall, GRID_BLANK, APTYPE_BOTHCALLS);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| #define EBNO_MIN -10.0f		// minimum Eb/No value returned by the decoder (in dB)
 | |
| // AWGN metric decoder
 | |
| int qra64_decode(qra64codec *pcodec, float *ebno, int *x, const float *rxen)
 | |
| {
 | |
|   int k;
 | |
|   float *srctmp, *dsttmp;
 | |
|   float ix[QRA64_NC*QRA64_M];		// (depunctured) intrisic information
 | |
|   int   xdec[QRA64_KC];				// decoded message (with crc)
 | |
|   int   ydec[QRA64_NC];				// re-encoded message (for snr calculations)
 | |
|   float noisestd;					// estimated noise variance
 | |
|   float msge;						// estimated message energy
 | |
|   float ebnoval;					// estimated Eb/No
 | |
|   int rc;
 | |
|   
 | |
|   if (QRA64_NMSG!=QRA64_CODE.NMSG)      // sanity check 
 | |
|     return -16;				// QRA64_NMSG define is wrong
 | |
| 
 | |
|   // compute symbols intrinsic probabilities from received energy observations
 | |
|   noisestd = qra_mfskbesselmetric(ix, rxen, QRA64_m, QRA64_N,pcodec->decEsNoMetric);
 | |
| 
 | |
|   // de-puncture observations adding a uniform distribution for the crc symbol
 | |
| 
 | |
|   // move check symbols distributions one symbol towards the end
 | |
|   dsttmp = PD_ROWADDR(ix,QRA64_M, QRA64_NC-1);	//Point to last symbol prob dist
 | |
|   srctmp = dsttmp-QRA64_M;              // source is the previous pd
 | |
|   for (k=0;k<QRA64_C;k++) {
 | |
|     pd_init(dsttmp,srctmp,QRA64_M);
 | |
|     dsttmp -=QRA64_M;
 | |
|     srctmp -=QRA64_M;
 | |
|   }
 | |
|   // Initialize crc prob to a uniform distribution
 | |
|   pd_init(dsttmp,pd_uniform(QRA64_m),QRA64_M);
 | |
| 
 | |
|   // Try to decode using all AP cases if required
 | |
|   rc = qra64_decode_attempts(pcodec, xdec, ix);
 | |
| 
 | |
|   if (rc<0)
 | |
| 	  return rc;	// no success
 | |
| 
 | |
|   // successfull decode --------------------------------
 | |
|   
 | |
|   // copy decoded message (without crc) to output buffer
 | |
|   memcpy(x,xdec,QRA64_K*sizeof(int));
 | |
| 
 | |
|   if (ebno==0)	// null pointer indicates we are not interested in the Eb/No estimate
 | |
| 	  return rc;
 | |
| 
 | |
|   // reencode message and estimate Eb/No
 | |
|   qra_encode(&QRA64_CODE, ydec, xdec);	 
 | |
|   // puncture crc
 | |
|   memmove(ydec+QRA64_K,ydec+QRA64_KC,QRA64_C*sizeof(int)); 
 | |
|   // compute total power of decoded message
 | |
|   msge = 0;
 | |
|   for (k=0;k<QRA64_N;k++) {
 | |
| 	  msge +=rxen[ydec[k]];	// add energy of current symbol
 | |
| 	  rxen+=QRA64_M;			// ptr to next symbol
 | |
| 	  }
 | |
| 
 | |
|   // NOTE:
 | |
|   // To make a more accurate Eb/No estimation we should compute the noise variance
 | |
|   // on all the rxen values but the transmitted symbols.
 | |
|   // Noisestd is compute by qra_mfskbesselmetric assuming that
 | |
|   // the signal power is much less than the total noise power in the QRA64_M tones
 | |
|   // but this is true only if the Eb/No is low.
 | |
|   // Here, in order to improve accuracy, we linearize the estimated Eb/No value empirically
 | |
|   // (it gets compressed when it is very high as in this case the noise variance 
 | |
|   // is overestimated)
 | |
| 
 | |
|   // this would be the exact value if the noisestd were not overestimated at high Eb/No
 | |
|   ebnoval = (0.5f/(QRA64_K*QRA64_m))*msge/(noisestd*noisestd)-1.0f; 
 | |
| 
 | |
|   // Empirical linearization (to remove the noise variance overestimation)
 | |
|   // the resulting SNR is accurate up to +20 dB (51 dB Eb/No)
 | |
|   if (ebnoval>57.004f)
 | |
| 	  ebnoval=57.004f;
 | |
|   ebnoval = ebnoval*57.03f/(57.03f-ebnoval);
 | |
| 
 | |
|   // compute value in dB
 | |
|   if (ebnoval<=0) {
 | |
|     ebnoval = EBNO_MIN; // assume a minimum, positive value
 | |
|   }
 | |
|   else {
 | |
|     ebnoval = 10.0f*(float)log10(ebnoval);
 | |
|     if (ebnoval<EBNO_MIN) {
 | |
|       ebnoval = EBNO_MIN;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   *ebno = ebnoval;
 | |
| 
 | |
|   return rc;	
 | |
| }
 | |
| 
 | |
| //
 | |
| // Fast-fading / Rayleigh channel metric decoder ----------------------------------------------
 | |
| //
 | |
| // Tables of fading energies coefficients for QRA64 (Ts=6912/12000)
 | |
| // As the fading is assumed to be symmetric around the nominal frequency
 | |
| // only the leftmost and the central coefficient are stored in the tables.
 | |
| // (files have been generated with the Matlab code efgengaussenergy.m and efgenlorentzenergy.m)
 | |
| #include "fadengauss.c"
 | |
| #include "fadenlorentz.c"
 | |
| 
 | |
| int qra64_decode_fastfading(
 | |
| 				qra64codec *pcodec,		// ptr to the codec structure
 | |
| 				float *ebno,			// ptr to where the estimated Eb/No value will be saved
 | |
| 				int *x,					// ptr to decoded message 
 | |
| 				const float *rxen,		// ptr to received symbol energies array
 | |
| 				const int submode,		// submode idx (0=QRA64A ... 4=QRA64E)
 | |
| 				const float B90,	    // spread bandwidth (90% fractional energy)
 | |
| 				const int fadingModel)  // 0=Gaussian 1=Lorentzian fade model
 | |
| 
 | |
| // Decode a QRA64 msg using a fast-fading metric
 | |
| //
 | |
| // rxen: The array of the received bin energies
 | |
| //       Bins must be spaced by integer multiples of the symbol rate (1/Ts Hz)
 | |
| //       The array must be an array of total length U = L x N where:
 | |
| //			L: is the number of frequency bins per message symbol (see after)
 | |
| //          N: is the number of symbols in a QRA64 msg (63)
 | |
| 
 | |
| //       The number of bins/symbol L depends on the selected submode accordingly to 
 | |
| //		 the following rule:
 | |
| //			L = (64+64*2^submode+64) = 64*(2+2^submode)
 | |
| //		 Tone 0 is always supposed to be at offset 64 in the array.
 | |
| //		 The m-th tone nominal frequency is located at offset 64 + m*2^submode (m=0..63)
 | |
| //
 | |
| //		 Submode A: (2^submode = 1)
 | |
| //          L = 64*3 = 196 bins/symbol
 | |
| //          Total length of the energies array: U = 192*63 = 12096 floats
 | |
| //
 | |
| //		 Submode B: (2^submode = 2)
 | |
| //          L = 64*4 = 256 bins/symbol
 | |
| //          Total length of the energies array: U = 256*63 = 16128 floats
 | |
| //
 | |
| //		 Submode C: (2^submode = 4)
 | |
| //          L = 64*6 = 384 bins/symbol
 | |
| //          Total length of the energies array: U = 384*63 = 24192 floats
 | |
| //
 | |
| //		 Submode D: (2^submode = 8)
 | |
| //          L = 64*10 = 640 bins/symbol
 | |
| //          Total length of the energies array: U = 640*63 = 40320 floats
 | |
| //
 | |
| //		 Submode E: (2^submode = 16)
 | |
| //          L = 64*18 = 1152 bins/symbol
 | |
| //          Total length of the energies array: U = 1152*63 = 72576 floats
 | |
| //
 | |
| //		Note: The rxen array is modified and reused for internal calculations.
 | |
| //
 | |
| //
 | |
| //	B90: spread fading bandwidth in Hz (90% fractional average energy)
 | |
| //
 | |
| //			B90 should be in the range 1 Hz ... 238 Hz
 | |
| //			The value passed to the call is rounded to the closest value among the 
 | |
| //			64 available values:
 | |
| //				B = 1.09^k Hz, with k=0,1,...,63
 | |
| //
 | |
| //			I.e. B90=27 Hz will be approximated in this way:
 | |
| //				k = rnd(log(27)/log(1.09)) = 38
 | |
| //              B90 = 1.09^k = 1.09^38 = 26.4 Hz
 | |
| //
 | |
| //          For any input value the maximum rounding error is not larger than +/- 5%
 | |
| //          
 | |
| 
 | |
| {
 | |
| 
 | |
|   int k;
 | |
|   float *srctmp, *dsttmp;
 | |
|   float ix[QRA64_NC*QRA64_M];		// (depunctured) intrisic information
 | |
|   int   xdec[QRA64_KC];				// decoded message (with crc)
 | |
|   int   ydec[QRA64_NC];				// re-encoded message (for snr calculations)
 | |
|   float noisestd;					// estimated noise std
 | |
|   float esno,ebnoval;				// estimated Eb/No
 | |
|   float tempf;
 | |
|   float EsNoMetric;
 | |
| 
 | |
|   int rc;
 | |
|   int hidx, hlen;
 | |
|   const float *hptr;
 | |
|   
 | |
| 	if (QRA64_NMSG!=QRA64_CODE.NMSG)
 | |
| 		return -16;					// QRA64_NMSG define is wrong
 | |
| 
 | |
| 	if (submode<0 || submode>4)
 | |
| 		return -17;				// invalid submode
 | |
| 
 | |
| 	if (B90<1.0f || B90>238.0f)	
 | |
| 		return -18;				// B90 out of range
 | |
| 
 | |
| 	// compute index to most appropriate amplitude weighting function coefficients
 | |
|     hidx = (int)(log((float)B90)/log(1.09f) - 0.499f);
 | |
| 
 | |
| 	if (hidx<0 || hidx > 64) 
 | |
| 		return -19;				// index of weighting function out of range
 | |
| 
 | |
| 	if (fadingModel==0) {	 // gaussian fading model
 | |
| 		// point to gaussian energy weighting taps
 | |
| 		hlen = glen_tab_gauss[hidx];	 // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
 | |
| 		hptr = gptr_tab_gauss[hidx];     // pointer to the first (L+1)/2 coefficients of w fun
 | |
| 		}
 | |
| 	else if (fadingModel==1) {
 | |
| 		// point to lorentzian energy weighting taps
 | |
| 		hlen = glen_tab_lorentz[hidx];	 // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
 | |
| 		hptr = gptr_tab_lorentz[hidx];     // pointer to the first (L+1)/2 coefficients of w fun
 | |
| 		}
 | |
| 	else 
 | |
| 		return -20;			// invalid fading model index
 | |
| 
 | |
| 
 | |
| 	// compute (euristically) the optimal decoder metric accordingly the given spread amount
 | |
| 	// We assume that the decoder threshold is:
 | |
| 	//		Es/No(dB) = Es/No(AWGN)(dB) + 8*log(B90)/log(240)(dB)
 | |
| 	// that's to say, at the maximum Doppler spread bandwidth (240 Hz) there's a ~8 dB Es/No degradation
 | |
| 	// over the AWGN case
 | |
| 	tempf = 8.0f*(float)log((float)B90)/(float)log(240.0f);
 | |
| 	EsNoMetric = pcodec->decEsNoMetric*(float)pow(10.0f,tempf/10.0f);
 | |
| 
 | |
| 
 | |
| 
 | |
| 	// Step 1 ----------------------------------------------------------------------------------- 
 | |
| 	// Evaluate the noise stdev from the received energies at nominal tone frequencies
 | |
| 	noisestd = qra64_fastfading_estim_noise_std(rxen, EsNoMetric, submode);
 | |
| 
 | |
| 	// Step 2 -----------------------------------------------------------------------------------
 | |
| 	// Compute message symbols probability distributions
 | |
| 	qra64_fastfading_intrinsics(ix, rxen, hptr, hlen, noisestd, EsNoMetric, submode);
 | |
| 
 | |
| 	// Step 3 ---------------------------------------------------------------------------
 | |
| 	// De-puncture observations adding a uniform distribution for the crc symbol
 | |
| 	// Move check symbols distributions one symbol towards the end
 | |
| 	dsttmp = PD_ROWADDR(ix,QRA64_M, QRA64_NC-1);	//Point to last symbol prob dist
 | |
| 	srctmp = dsttmp-QRA64_M;              // source is the previous pd
 | |
| 	for (k=0;k<QRA64_C;k++) {
 | |
| 		pd_init(dsttmp,srctmp,QRA64_M);
 | |
| 		dsttmp -=QRA64_M;
 | |
| 		srctmp -=QRA64_M;
 | |
| 		}
 | |
| 	// Initialize crc prob to a uniform distribution
 | |
| 	pd_init(dsttmp,pd_uniform(QRA64_m),QRA64_M);
 | |
| 
 | |
| 	// Step 4 ---------------------------------------------------------------------------
 | |
| 	// Attempt to decode
 | |
| 	rc = qra64_decode_attempts(pcodec, xdec, ix);
 | |
| 	if (rc<0)
 | |
| 	  return rc;	// no success
 | |
| 
 | |
| 	// copy decoded message (without crc) to output buffer
 | |
| 	memcpy(x,xdec,QRA64_K*sizeof(int));
 | |
| 
 | |
| 	// Step 5 ----------------------------------------------------------------------------
 | |
| 	// Estimate the message Eb/No
 | |
| 
 | |
| 	if (ebno==0)	// null pointer indicates we are not interested in the Eb/No estimate
 | |
| 		return rc;
 | |
| 
 | |
| 	// reencode message to estimate Eb/No
 | |
| 	qra_encode(&QRA64_CODE, ydec, xdec);	 
 | |
| 	// puncture crc
 | |
| 	memmove(ydec+QRA64_K,ydec+QRA64_KC,QRA64_C*sizeof(int)); 
 | |
| 
 | |
| 	// compute Es/N0 of decoded message
 | |
| 	esno = qra64_fastfading_msg_esno(ydec,rxen,noisestd, EsNoMetric, hlen,submode);
 | |
| 
 | |
| 	// as the weigthing function include about 90% of the energy
 | |
| 	// we could compute the unbiased esno with:
 | |
| 	// esno = esno/0.9;
 | |
| 	
 | |
| 	// Es/N0 --> Eb/N0 conversion
 | |
| 	ebnoval = 1.0f/(1.0f*QRA64_K/QRA64_N*QRA64_m)*esno; 
 | |
| 
 | |
| 	// compute value in dB
 | |
| 	if (ebnoval<=0) {
 | |
| 	  ebnoval = EBNO_MIN; // assume a minimum, positive value
 | |
|     }
 | |
| 	else {
 | |
| 	  ebnoval = 10.0f*(float)log10(ebnoval);
 | |
| 	  if (ebnoval<EBNO_MIN) {
 | |
| 		  ebnoval = EBNO_MIN;
 | |
|       }
 | |
|     }
 | |
|   
 | |
| 	*ebno = ebnoval;
 | |
| 
 | |
|   return rc;	
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| int qra64_fastfading_channel(float **rxen, const int *xmsg, const int submode, const float EbN0dB, const float B90, const int fadingModel)
 | |
| {
 | |
| 	// Simulate transmission over a fading channel and non coherent detection
 | |
| 
 | |
| 	// Set rxen to point to an array of bin energies formatted as required 
 | |
| 	// by the (fast-fading) decoding routine
 | |
| 
 | |
| 	// returns 0 on success or negative values on error conditions
 | |
| 
 | |
| 	static float *channel_out = NULL;
 | |
| 	static int    channel_submode = -1;
 | |
| 
 | |
| 	int bpt = (1<<submode);			// bins per tone 
 | |
| 	int bps = QRA64_M*(2+bpt);		// total number of bins per symbols
 | |
| 	int bpm = bps*QRA64_N;			// total number of bins in a message
 | |
| 	int n,j,hidx, hlen;
 | |
| 	const float *hptr;
 | |
| 	float *cursym,*curtone;
 | |
| 
 | |
| 	float iq[2];
 | |
| 	float *curi, *curq;
 | |
| 	float sigmasig[65];	// signal standard deviation taps
 | |
| 
 | |
| 	float N0, EsN0, Es, sigmanoise;
 | |
| 
 | |
| 	if (rxen==NULL)
 | |
| 		return -1;		// rxen must be a non-null ptr 
 | |
| 
 | |
| 	// allocate output buffer if not yet done or if submode changed
 | |
| 	if (channel_out==NULL || submode!=channel_submode) {
 | |
| 
 | |
| 		// unallocate previous buffer
 | |
| 		if (channel_out)
 | |
| 			free(channel_out);
 | |
| 
 | |
| 		// allocate new buffer
 | |
| 		// we allocate twice the mem so that we can store/compute complex amplitudes
 | |
| 		channel_out = (float*)malloc(bpm*sizeof(float)*2);	
 | |
| 		if (channel_out==NULL)
 | |
| 			return -2;	// error allocating memory
 | |
| 
 | |
| 		channel_submode = submode;
 | |
| 		}
 | |
| 
 | |
| 	if (B90<1.0f || B90>238.0f)	
 | |
| 		return -18;				// B90 out of range
 | |
| 
 | |
| 	// compute index to most appropriate energy weighting function coefficients
 | |
|     hidx = (int)(log((float)B90)/log(1.09f) - 0.499f);
 | |
| 
 | |
| 	if (hidx<0 || hidx > 64) 
 | |
| 		return -19;				// index of weighting function out of range
 | |
| 
 | |
| 	if (fadingModel==0) {	 // gaussian fading model
 | |
| 		// point to gaussian weighting taps
 | |
| 		hlen = glen_tab_gauss[hidx];	 // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
 | |
| 		hptr = gptr_tab_gauss[hidx];     // pointer to the first (L+1)/2 coefficients of w fun
 | |
| 		}
 | |
| 	else if (fadingModel==1) {
 | |
| 		// point to lorentzian weighting taps
 | |
| 		hlen = glen_tab_lorentz[hidx];	 // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
 | |
| 		hptr = gptr_tab_lorentz[hidx];     // pointer to the first (L+1)/2 coefficients of w fun
 | |
| 		}
 | |
| 	else 
 | |
| 		return -20;			// invalid fading model index
 | |
| 
 | |
| 
 | |
| 	// Compute the unfaded tone amplitudes from the Eb/No value passed to the call
 | |
| 	N0 = 1.0f;	// assume unitary noise PSD
 | |
| 	sigmanoise = (float)sqrt(N0/2);
 | |
| 	EsN0 = (float)pow(10.0f,EbN0dB/10.0f)*QRA64_m*QRA64_K/QRA64_N; // Es/No = m*R*Eb/No
 | |
| 	Es   = EsN0*N0;
 | |
| 
 | |
| 	// compute signal bin sigmas
 | |
| 	for (n=0;n<hlen;n++)
 | |
| 		sigmasig[n] = (float)sqrt(hptr[n]*Es/2.0f);
 | |
| 
 | |
| 	// Generate gaussian noise iq components
 | |
| 	normrnd_s(channel_out, bpm*2, 0 , sigmanoise);
 | |
| 
 | |
| 	// Add symbols, bin by bin energies
 | |
| 	for (n=0;n<QRA64_N;n++) {					
 | |
| 
 | |
| 		cursym  = channel_out+n*bps + QRA64_M; // point to n-th symbol
 | |
| 		curtone = cursym+xmsg[n]*bpt;	 // point to encoded tone 
 | |
| 		curi    = curtone-hlen+1;		 // point to real part of first bin
 | |
| 		curq    = curtone-hlen+1+bpm;	 // point to imag part of first bin
 | |
| 		
 | |
| 		// generate Rayleigh faded bins with given average energy and add to noise
 | |
| 		for (j=0;j<hlen;j++) {	
 | |
| 			normrnd_s(iq, 2, 0 , sigmasig[j]);
 | |
| 			*curi++ += iq[0];
 | |
| 			*curq++ += iq[1];
 | |
| 			}
 | |
| 		for (j=hlen-2;j>=0;j--) {	
 | |
| 			normrnd_s(iq, 2, 0 , sigmasig[j]);
 | |
| 			*curi++ += iq[0];
 | |
| 			*curq++ += iq[1];
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	// compute total bin energies (S+N) and store in first half of buffer
 | |
| 	curi = channel_out;
 | |
| 	curq = channel_out+bpm;
 | |
| 	for (n=0;n<bpm;n++) 					
 | |
| 		channel_out[n] = curi[n]*curi[n] + curq[n]*curq[n];
 | |
| 
 | |
| 	// set rxen to point to the channel output energies
 | |
| 	*rxen = channel_out;
 | |
| 
 | |
| 	return 0;	
 | |
| }
 | |
| */
 | |
| 
 | |
| 
 | |
| // Static functions definitions ----------------------------------------------
 | |
| 
 | |
| // fast-fading static functions --------------------------------------------------------------
 | |
| 
 | |
| static float qra64_fastfading_estim_noise_std(const float *rxen, const float esnometric, const int submode)
 | |
| {
 | |
| 	// estimate the noise standard deviation from nominal frequency symbol bins
 | |
| 	// transform energies to amplitudes
 | |
| 
 | |
| 	// rxen = message symbols energies (overwritten with symbols amplitudes)
 | |
| 	// esnometric = Es/No at nominal frequency bin for which we compute the decoder metric
 | |
| 	// submode = submode used (0=A...4=E)
 | |
| 
 | |
| 	int bpt = (1<<submode);			// bins per tone 
 | |
| 	int bps = QRA64_M*(2+bpt);		// total number of bins per symbols
 | |
| 	int bpm = bps*QRA64_N;			// total number of bins in a message
 | |
| 	int k;
 | |
| 	float sigmaest;
 | |
| 
 | |
| 	// estimate noise std
 | |
| 	sigmaest = 0;
 | |
| 	for (k=0;k<bpm;k++) 
 | |
| 		sigmaest += rxen[k];
 | |
| 
 | |
| 	sigmaest = sigmaest/bpm;
 | |
| 	sigmaest = (float)sqrt(sigmaest/(1.0f+esnometric/bps)/2.0f); 
 | |
| 
 | |
| 	// Note: sigma is overestimated by the (unknown) factor sqrt((1+esno(true)/bps)/(1+esnometric/bps))
 | |
| 
 | |
| 	return sigmaest;
 | |
| }
 | |
| 
 | |
| static void qra64_fastfading_intrinsics(
 | |
| 				float *pix, 
 | |
| 				const float *rxen, 
 | |
| 				const float *hptr, 
 | |
| 				const int    hlen, 
 | |
| 				const float sigmaest,
 | |
| 				const float EsNoMetric, 
 | |
| 				const int submode)
 | |
| {
 | |
| 
 | |
| 	// For each symbol in a message:
 | |
| 	// a) Compute tones loglikelihoods as a sum of products between of the expected 
 | |
| 	// energy fading coefficient and received energies.
 | |
| 	// b) Compute intrinsic symbols probability distributions from symbols loglikelihoods
 | |
| 
 | |
| 	int n,k,j, bps, bpt;
 | |
| 	const float *cursym, *curbin;
 | |
| 	float *curix;
 | |
| 	float u, maxloglh, loglh, sumix,hh;
 | |
| 	float w[65];
 | |
| 	int hhsz  = hlen-1;
 | |
| 	int hlast = 2*hhsz;
 | |
| 	float npwrest = 2.0f*sigmaest*sigmaest;
 | |
| 
 | |
| 	bpt = 1<<submode;				// bins per tone
 | |
| 	bps = QRA64_M*(2+bpt);			// bins per symbol
 | |
| 
 | |
| 	u = EsNoMetric;
 | |
| 	// compute weights from energy tables
 | |
| 	for (j=0;j<hlen;j++) {	
 | |
| 		hh = hptr[j]*u; 
 | |
| 		w[j] = hh/(1+hh)/npwrest;
 | |
| 		}
 | |
| 
 | |
| 	for (n=0;n<QRA64_N;n++) {			// for each symbol in the message
 | |
| 		cursym = rxen+n*bps + QRA64_M;	// point to current symbol nominal bin
 | |
| 		maxloglh = 0;
 | |
| 		curix  = pix+n*QRA64_M;		
 | |
| 		for (k=0;k<QRA64_M;k++) {   // for each tone in the current symbol
 | |
| 			curbin = cursym + k*bpt -hlen+1;
 | |
| 			// compute tone loglikelihood (symmetric fir with given weights)
 | |
| 			loglh = 0.f;
 | |
| 			for (j=0;j<hhsz;j++) 
 | |
| 				loglh += w[j]*(curbin[j] + curbin[hlast-j]);	
 | |
| 			loglh += w[hhsz]*curbin[hhsz];
 | |
| 
 | |
| 			if (loglh>maxloglh)		// keep track of the max loglikelihood
 | |
| 				maxloglh = loglh;
 | |
| 			curix[k]=loglh;
 | |
| 			}
 | |
| 
 | |
| 		// scale to likelihoods
 | |
| 		sumix = 0.f;
 | |
| 		for (k=0;k<QRA64_M;k++) {   
 | |
| 			u = (float)exp(curix[k]-maxloglh);
 | |
| 			curix[k]=u;
 | |
| 			sumix +=u;
 | |
| 			}
 | |
| 		// scale to probabilities
 | |
| 		sumix = 1.0f/sumix;
 | |
| 		for (k=0;k<QRA64_M;k++) 
 | |
| 			curix[k] = curix[k]*sumix;
 | |
| 		}
 | |
| }
 | |
| 
 | |
| static float qra64_fastfading_msg_esno(
 | |
| 			const int *ydec,
 | |
| 			const float *rxen, 
 | |
| 			const float sigma,
 | |
| 			const float EsNoMetric,
 | |
| 			const int hlen, 
 | |
| 			const int submode)
 | |
| {
 | |
| 	// Estimate msg Es/N0
 | |
| 
 | |
| 	int n,j, bps, bpt;
 | |
| 	const float *cursym, *curtone, *curbin;
 | |
| 	float u, msgsn,esno;
 | |
| 	int tothlen = 2*hlen-1;
 | |
| 
 | |
| 	bpt = 1<<submode;				// bins per tone
 | |
| 	bps = QRA64_M*(2+bpt);			// bins per symbol
 | |
| 
 | |
| 	msgsn = 0;
 | |
| 	for (n=0;n<QRA64_N;n++) {					
 | |
| 		cursym  = rxen+n*bps + QRA64_M; // point to n-th symbol amplitudes
 | |
| 		curtone = cursym+ydec[n]*bpt;	 // point to decoded tone amplitudes
 | |
| 		curbin  = curtone-hlen+1;		 // point to first bin amplitude
 | |
| 		
 | |
| 		// sum bin energies
 | |
| 		for (j=0;j<tothlen;j++)
 | |
| 			msgsn += curbin[j];		
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	msgsn =  msgsn/(QRA64_N*tothlen);	// avg msg energy per bin (noise included)
 | |
| 
 | |
| 	// as sigma is overestimated (sigmatrue = sigma*sqrt((1+EsNoMetric/bps)/(1+EsNo/bps))
 | |
| 	// we have: msgsn = (1+x/hlen)/(1+x/bps)*2*sigma^2*(1+EsnoMetric/bps), where x = Es/N0(true)
 | |
| 	//
 | |
| 	// we can then write:
 | |
| 	// u = msgsn/2.0f/(sigma*sigma)/(1.0f+EsNoMetric/bps);
 | |
| 	// (1+x/hlen)/(1+x/bps) = u
 | |
| 
 | |
| 	u = msgsn/(2.0f*sigma*sigma)/(1.0f+EsNoMetric/bps);
 | |
| 
 | |
| 	// check u>1 
 | |
| 	if (u<1)
 | |
| 		return 0.f;
 | |
| 
 | |
| 	// check u<bps/tot hlen
 | |
| 	if (u>(bps/tothlen))
 | |
| 		return 10000.f;
 | |
| 
 | |
| 	// solve for Es/No
 | |
| 	esno = (u-1.0f)/(1.0f/tothlen-u/bps);
 | |
| 
 | |
| 	return esno;
 | |
| 	
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef LIMIT_AP_MASKS
 | |
| 
 | |
| static int call1_match(const int *papmsg, const int *pdec)
 | |
| {
 | |
| 	// assumes MASK_CALL1   =   0xFFFFFFC
 | |
| 	int u = papmsg[4]^pdec[4];
 | |
| 	return (u&0x3C)==0;
 | |
| }
 | |
| static int call2_match(const int *papmsg, const int *pdec)
 | |
| {
 | |
| 	// assumes MASK_CALL2   =   0xFFFFFFC
 | |
| 	int u = papmsg[9]^pdec[9];
 | |
| 	return  (u&0x30)==0;
 | |
| }
 | |
| static int grid_match(const int *papmsg, const int *pdec)
 | |
| {
 | |
| 	// assumes MASK_GRIDFULL =	0x3FFC
 | |
| 	int u = papmsg[11]^pdec[11];
 | |
| 	int rc = (u&0x03)==0;
 | |
| 
 | |
| 	u = papmsg[9]^pdec[9];
 | |
| 
 | |
| 	return (u&0x0C)==0 && rc;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define call1_match(a,b) (1)
 | |
| #define call2_match(a,b) (1)
 | |
| #define grid_match(a,b) (1)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| // Attempt to decode given intrisic information
 | |
| static int qra64_decode_attempts(qra64codec *pcodec, int *xdec, const float *ix)
 | |
| {
 | |
|   int rc;
 | |
| 
 | |
|   // Attempt to decode without a-priori info --------------------------------
 | |
|   rc = qra64_do_decode(xdec, ix, NULL, NULL);
 | |
|   if (rc>=0) 
 | |
| 	  return 0; // successfull decode with AP0
 | |
|   else
 | |
| 	  if (pcodec->apflags==QRA_NOAP) 
 | |
| 		  // nothing more to do
 | |
| 		  return rc; // rc<0 = unsuccessful decode
 | |
| 
 | |
|   // Here we handle decoding with AP knowledge
 | |
| 
 | |
| 
 | |
|   // Attempt to decode CQ calls
 | |
|   rc = qra64_do_decode(xdec,ix,pcodec->apmask_cqqrz, pcodec->apmsg_cqqrz); 
 | |
|   if (rc>=0) 
 | |
| 	  return 1;    // decoded [cq/qrz ? ?]
 | |
| 
 | |
|   rc = qra64_do_decode(xdec, ix, pcodec->apmask_cqqrz_ooo, 
 | |
| 		       pcodec->apmsg_cqqrz);	                        
 | |
|   if (rc>=0) 
 | |
| 	  // check that ooo really matches
 | |
| 	  if (grid_match(pcodec->apmsg_cqqrz,xdec))
 | |
| 		  return 2;    // decoded [cq/qrz ? ooo]
 | |
| 
 | |
|   // attempt to decode calls directed to us 
 | |
|   if (pcodec->apmsg_set[APTYPE_MYCALL]) {
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_call1, 
 | |
| 		       pcodec->apmsg_call1);		                
 | |
| 	if (rc>=0) 
 | |
| 		// check that mycall really matches
 | |
| 		if (call1_match(pcodec->apmsg_call1,xdec))
 | |
| 			return 3;    // decoded [mycall ? ?]
 | |
| 
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_call1_ooo, 
 | |
| 		       pcodec->apmsg_call1);	                    
 | |
| 	if (rc>=0) 
 | |
| 		// check that mycall and ooo really match
 | |
| 		if (call1_match(pcodec->apmsg_call1,xdec) && 
 | |
| 			grid_match(pcodec->apmsg_call1,xdec))
 | |
| 			return 4;    // decoded [mycall ? ooo]
 | |
| 	}
 | |
| 
 | |
|   // attempt to decode [mycall hiscall ?] msgs
 | |
|   if (pcodec->apmsg_set[APTYPE_BOTHCALLS]) {
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_call1_call2, 
 | |
| 		       pcodec->apmsg_call1_call2);	                
 | |
| 	if (rc>=0) 
 | |
| 		// check that mycall and hiscall really match
 | |
| 		if (call1_match(pcodec->apmsg_call1_call2,xdec) && 
 | |
| 			call2_match(pcodec->apmsg_call1_call2,xdec))
 | |
| 			return 5;    // decoded [mycall srccall ?]	
 | |
| 	}
 | |
| 
 | |
|   // attempt to decode [? hiscall ?/b] msgs
 | |
|   if (pcodec->apmsg_set[APTYPE_HISCALL]) {
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_call2, 
 | |
| 		       pcodec->apmsg_call2);		                
 | |
| 	if (rc>=0) 
 | |
| 		// check that hiscall really match
 | |
| 		if (call2_match(pcodec->apmsg_call2,xdec))
 | |
| 			return 6;    // decoded [? hiscall ?]
 | |
| 
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_call2_ooo, 
 | |
| 		       pcodec->apmsg_call2);	                    
 | |
| 	if (rc>=0) 
 | |
| 		// check that hiscall and ooo match
 | |
| 		if (call2_match(pcodec->apmsg_call2,xdec) &&
 | |
| 			grid_match(pcodec->apmsg_call2,xdec))
 | |
| 			return 7;    // decoded [? hiscall ooo]
 | |
| 	}
 | |
| 
 | |
|   // attempt to decode [cq/qrz hiscall ?/b/grid] msgs
 | |
|   if (pcodec->apmsg_set[APTYPE_CQHISCALL]) {
 | |
| 
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_cq_call2, 
 | |
| 				pcodec->apmsg_cq_call2);		                
 | |
| 	if (rc>=0) 
 | |
| 		// check that hiscall matches
 | |
| 		if (call2_match(pcodec->apmsg_call2,xdec))
 | |
| 			return 9;	// decoded [cq/qrz hiscall ?]
 | |
| 
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_cq_call2_ooo, 
 | |
| 		       pcodec->apmsg_cq_call2_grid);	
 | |
| 	if (rc>=0) {
 | |
| 		// Full AP mask need special handling
 | |
| 		// To minimize false decodes we check the decoded message
 | |
| 		// with what passed in the ap_set call
 | |
| 		if (memcmp(pcodec->apmsg_cq_call2_grid,xdec, QRA64_K*sizeof(int))==0) 
 | |
| 			return 11;		// decoded [cq/qrz hiscall grid]
 | |
| 		}    
 | |
| 
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_cq_call2_ooo, 
 | |
| 		       pcodec->apmsg_cq_call2);	                    
 | |
| 	if (rc>=0) { 
 | |
| 		// Full AP mask need special handling
 | |
| 		// To minimize false decodes we check the decoded message
 | |
| 		// with what passed in the ap_set call
 | |
| 		if (memcmp(pcodec->apmsg_cq_call2,xdec, QRA64_K*sizeof(int))==0) 
 | |
| 			return 10;    // decoded [cq/qrz hiscall ]
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|   // attempt to decode [mycall hiscall grid]
 | |
|   if (pcodec->apmsg_set[APTYPE_FULL]) {
 | |
| 	rc = qra64_do_decode(xdec, ix, pcodec->apmask_call1_call2_grid, 
 | |
| 		       pcodec->apmsg_call1_call2_grid); 
 | |
| 	if (rc>=0) { 
 | |
| 		// Full AP mask need special handling
 | |
| 		// All the three msg fields were given.
 | |
| 		// To minimize false decodes we check the decoded message
 | |
| 		// with what passed in the ap_set call
 | |
| 		if (memcmp(pcodec->apmsg_call1_call2_grid,xdec, QRA64_K*sizeof(int))==0) 
 | |
| 			return 8;	   // decoded [mycall hiscall grid]
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|   // all decoding attempts failed
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // Decode with given a-priori information 
 | |
| static int qra64_do_decode(int *xdec, const float *pix, const int *ap_mask, 
 | |
| 			   const int *ap_x)
 | |
| {
 | |
|   int rc;
 | |
|   const float *ixsrc;
 | |
|   float ix_masked[QRA64_NC*QRA64_M];  // Masked intrinsic information
 | |
|   float ex[QRA64_NC*QRA64_M];	      // Extrinsic information from the decoder
 | |
| 
 | |
|   float v2cmsg[QRA64_NMSG*QRA64_M];   // buffers for the decoder messages
 | |
|   float c2vmsg[QRA64_NMSG*QRA64_M];
 | |
| 
 | |
|   if (ap_mask==NULL) {   // no a-priori information
 | |
|     ixsrc = pix;	 // intrinsic source is what passed as argument
 | |
|   } else {	
 | |
|     // a-priori information provided
 | |
|     // mask channel observations with a-priori 
 | |
|     ix_mask(ix_masked,pix,ap_mask,ap_x);
 | |
|     ixsrc = ix_masked;	// intrinsic source is the masked version
 | |
|   }
 | |
| 
 | |
|   // run the decoding algorithm
 | |
|   rc = qra_extrinsic(&QRA64_CODE,ex,ixsrc,QRA64_NITER,v2cmsg,c2vmsg);
 | |
|   if (rc<0)
 | |
|     return -1;	// no convergence in given iterations
 | |
| 
 | |
|   // decode 
 | |
|   qra_mapdecode(&QRA64_CODE,xdec,ex,ixsrc);
 | |
| 
 | |
|   // verify crc
 | |
|   if (calc_crc6(xdec,QRA64_K)!=xdec[QRA64_K]) // crc doesn't match (detected error)
 | |
|     return -2;	// decoding was succesfull but crc doesn't match
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // crc functions --------------------------------------------------------------
 | |
| // crc-6 generator polynomial
 | |
| // g(x) = x^6 + a5*x^5 + ... + a1*x + a0
 | |
| 
 | |
| // g(x) = x^6 + x + 1  
 | |
| #define CRC6_GEN_POL 0x30  // MSB=a0 LSB=a5    
 | |
| 
 | |
| // g(x) = x^6 + x^2 + x + 1 (See:  https://users.ece.cmu.edu/~koopman/crc/)
 | |
| // #define CRC6_GEN_POL 0x38  // MSB=a0 LSB=a5. Simulation results are similar
 | |
| 
 | |
| static int calc_crc6(const int *x, int sz)
 | |
| {
 | |
|   // todo: compute it faster using a look up table
 | |
|   int k,j,t,sr = 0;
 | |
|   for (k=0;k<sz;k++) {
 | |
|     t = x[k];
 | |
|     for (j=0;j<6;j++) {
 | |
|       if ((t^sr)&0x01)
 | |
| 	sr = (sr>>1) ^ CRC6_GEN_POL;
 | |
|       else
 | |
| 	sr = (sr>>1);
 | |
|       t>>=1;
 | |
|     }
 | |
|   }
 | |
|   return sr;
 | |
| }
 | |
| 
 | |
| static void ix_mask(float *dst, const float *src, const int *mask, 
 | |
| 		    const int *x)
 | |
| {
 | |
|   // mask intrinsic information (channel observations) with a priori knowledge
 | |
| 	
 | |
|   int k,kk, smask;
 | |
|   float *row;
 | |
| 
 | |
|   memcpy(dst,src,(QRA64_NC*QRA64_M)*sizeof(float));
 | |
| 
 | |
|   for (k=0;k<QRA64_K;k++) {	// we can mask only information symbols distrib
 | |
|     smask = mask[k];
 | |
|     row = PD_ROWADDR(dst,QRA64_M,k);
 | |
|     if (smask) {
 | |
|       for (kk=0;kk<QRA64_M;kk++) 
 | |
| 	if (((kk^x[k])&smask)!=0)
 | |
| 	  *(row+kk) = 0.f;
 | |
| 
 | |
|       pd_norm(row,QRA64_m);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // encode/decode msgs as done in JT65
 | |
| void encodemsg_jt65(int *y, const int call1, const int call2, const int grid)
 | |
| {
 | |
|   y[0]= (call1>>22)&0x3F;
 | |
|   y[1]= (call1>>16)&0x3F;
 | |
|   y[2]= (call1>>10)&0x3F;
 | |
|   y[3]= (call1>>4)&0x3F;
 | |
|   y[4]= (call1<<2)&0x3F;
 | |
| 
 | |
|   y[4] |= (call2>>26)&0x3F;
 | |
|   y[5]= (call2>>20)&0x3F;
 | |
|   y[6]= (call2>>14)&0x3F;
 | |
|   y[7]= (call2>>8)&0x3F;
 | |
|   y[8]= (call2>>2)&0x3F;
 | |
|   y[9]= (call2<<4)&0x3F;
 | |
| 
 | |
|   y[9] |= (grid>>12)&0x3F;
 | |
|   y[10]= (grid>>6)&0x3F;
 | |
|   y[11]= (grid)&0x3F;
 | |
| 
 | |
| }
 | |
| void decodemsg_jt65(int *call1, int *call2, int *grid, const int *x)
 | |
| {
 | |
|   int nc1, nc2, ng;
 | |
| 
 | |
|   nc1 = x[4]>>2;
 | |
|   nc1 |= x[3]<<4;
 | |
|   nc1 |= x[2]<<10;
 | |
|   nc1 |= x[1]<<16;
 | |
|   nc1 |= x[0]<<22;
 | |
| 
 | |
|   nc2 = x[9]>>4;
 | |
|   nc2 |= x[8]<<2;
 | |
|   nc2 |= x[7]<<8;
 | |
|   nc2 |= x[6]<<14;
 | |
|   nc2 |= x[5]<<20;
 | |
|   nc2 |= (x[4]&0x03)<<26;
 | |
| 
 | |
|   ng   = x[11];
 | |
|   ng  |= x[10]<<6;
 | |
|   ng  |= (x[9]&0x0F)<<12;
 | |
| 
 | |
|   *call1 = nc1;
 | |
|   *call2 = nc2;
 | |
|   *grid  = ng;
 | |
| }
 | 
