531 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			531 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////
 | |
| //  Copyright 2011 John Maddock. Distributed under the Boost
 | |
| //  Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MP_GENERIC_INTERCONVERT_HPP
 | |
| #define BOOST_MP_GENERIC_INTERCONVERT_HPP
 | |
| 
 | |
| #include <boost/multiprecision/detail/default_ops.hpp>
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4127 6326)
 | |
| #endif
 | |
| 
 | |
| namespace boost{ namespace multiprecision{ namespace detail{
 | |
| 
 | |
| template <class To, class From>
 | |
| inline To do_cast(const From & from)
 | |
| {
 | |
|    return static_cast<To>(from);
 | |
| }
 | |
| template <class To, class B, ::boost::multiprecision::expression_template_option et>
 | |
| inline To do_cast(const number<B, et>& from)
 | |
| {
 | |
|    return from.template convert_to<To>();
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_floating_point>& /*to_type*/, const mpl::int_<number_kind_integer>& /*from_type*/)
 | |
| {
 | |
|    using default_ops::eval_get_sign;
 | |
|    using default_ops::eval_bitwise_and;
 | |
|    using default_ops::eval_convert_to;
 | |
|    using default_ops::eval_right_shift;
 | |
|    using default_ops::eval_ldexp;
 | |
|    using default_ops::eval_add;
 | |
|    using default_ops::eval_is_zero;
 | |
|    // smallest unsigned type handled natively by "From" is likely to be it's limb_type:
 | |
|    typedef typename canonical<unsigned char, From>::type   l_limb_type;
 | |
|    // get the corresponding type that we can assign to "To":
 | |
|    typedef typename canonical<l_limb_type, To>::type         to_type;
 | |
|    From t(from);
 | |
|    bool is_neg = eval_get_sign(t) < 0;
 | |
|    if(is_neg)
 | |
|       t.negate();
 | |
|    // Pick off the first limb:
 | |
|    l_limb_type limb;
 | |
|    l_limb_type mask = static_cast<l_limb_type>(~static_cast<l_limb_type>(0));
 | |
|    From fl;
 | |
|    eval_bitwise_and(fl, t, mask);
 | |
|    eval_convert_to(&limb, fl);
 | |
|    to = static_cast<to_type>(limb);
 | |
|    eval_right_shift(t, std::numeric_limits<l_limb_type>::digits);
 | |
|    //
 | |
|    // Then keep picking off more limbs until "t" is zero:
 | |
|    //
 | |
|    To l;
 | |
|    unsigned shift = std::numeric_limits<l_limb_type>::digits;
 | |
|    while(!eval_is_zero(t))
 | |
|    {
 | |
|       eval_bitwise_and(fl, t, mask);
 | |
|       eval_convert_to(&limb, fl);
 | |
|       l = static_cast<to_type>(limb);
 | |
|       eval_right_shift(t, std::numeric_limits<l_limb_type>::digits);
 | |
|       eval_ldexp(l, l, shift);
 | |
|       eval_add(to, l);
 | |
|       shift += std::numeric_limits<l_limb_type>::digits;
 | |
|    }
 | |
|    //
 | |
|    // Finish off by setting the sign:
 | |
|    //
 | |
|    if(is_neg)
 | |
|       to.negate();
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_integer>& /*to_type*/, const mpl::int_<number_kind_integer>& /*from_type*/)
 | |
| {
 | |
|    using default_ops::eval_get_sign;
 | |
|    using default_ops::eval_bitwise_and;
 | |
|    using default_ops::eval_convert_to;
 | |
|    using default_ops::eval_right_shift;
 | |
|    using default_ops::eval_left_shift;
 | |
|    using default_ops::eval_bitwise_or;
 | |
|    using default_ops::eval_is_zero;
 | |
|    // smallest unsigned type handled natively by "From" is likely to be it's limb_type:
 | |
|    typedef typename canonical<unsigned char, From>::type   limb_type;
 | |
|    // get the corresponding type that we can assign to "To":
 | |
|    typedef typename canonical<limb_type, To>::type         to_type;
 | |
|    From t(from);
 | |
|    bool is_neg = eval_get_sign(t) < 0;
 | |
|    if(is_neg)
 | |
|       t.negate();
 | |
|    // Pick off the first limb:
 | |
|    limb_type limb;
 | |
|    limb_type mask = static_cast<limb_type>(~static_cast<limb_type>(0));
 | |
|    From fl;
 | |
|    eval_bitwise_and(fl, t, mask);
 | |
|    eval_convert_to(&limb, fl);
 | |
|    to = static_cast<to_type>(limb);
 | |
|    eval_right_shift(t, std::numeric_limits<limb_type>::digits);
 | |
|    //
 | |
|    // Then keep picking off more limbs until "t" is zero:
 | |
|    //
 | |
|    To l;
 | |
|    unsigned shift = std::numeric_limits<limb_type>::digits;
 | |
|    while(!eval_is_zero(t))
 | |
|    {
 | |
|       eval_bitwise_and(fl, t, mask);
 | |
|       eval_convert_to(&limb, fl);
 | |
|       l = static_cast<to_type>(limb);
 | |
|       eval_right_shift(t, std::numeric_limits<limb_type>::digits);
 | |
|       eval_left_shift(l, shift);
 | |
|       eval_bitwise_or(to, l);
 | |
|       shift += std::numeric_limits<limb_type>::digits;
 | |
|    }
 | |
|    //
 | |
|    // Finish off by setting the sign:
 | |
|    //
 | |
|    if(is_neg)
 | |
|       to.negate();
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_floating_point>& /*to_type*/, const mpl::int_<number_kind_floating_point>& /*from_type*/)
 | |
| {
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4127)
 | |
| #endif
 | |
|    //
 | |
|    // The code here only works when the radix of "From" is 2, we could try shifting by other
 | |
|    // radixes but it would complicate things.... use a string conversion when the radix is other
 | |
|    // than 2:
 | |
|    //
 | |
|    if(std::numeric_limits<number<From> >::radix != 2)
 | |
|    {
 | |
|       to = from.str(0, std::ios_base::fmtflags()).c_str();
 | |
|       return;
 | |
|    }
 | |
| 
 | |
| 
 | |
|    typedef typename canonical<unsigned char, To>::type ui_type;
 | |
| 
 | |
|    using default_ops::eval_fpclassify;
 | |
|    using default_ops::eval_add;
 | |
|    using default_ops::eval_subtract;
 | |
|    using default_ops::eval_convert_to;
 | |
|    using default_ops::eval_get_sign;
 | |
|    using default_ops::eval_is_zero;
 | |
| 
 | |
|    //
 | |
|    // First classify the input, then handle the special cases:
 | |
|    //
 | |
|    int c = eval_fpclassify(from);
 | |
| 
 | |
|    if(c == (int)FP_ZERO)
 | |
|    {
 | |
|       to = ui_type(0);
 | |
|       return;
 | |
|    }
 | |
|    else if(c == (int)FP_NAN)
 | |
|    {
 | |
|       to = static_cast<const char*>("nan");
 | |
|       return;
 | |
|    }
 | |
|    else if(c == (int)FP_INFINITE)
 | |
|    {
 | |
|       to = static_cast<const char*>("inf");
 | |
|       if(eval_get_sign(from) < 0)
 | |
|          to.negate();
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    typename From::exponent_type e;
 | |
|    From f, term;
 | |
|    to = ui_type(0);
 | |
| 
 | |
|    eval_frexp(f, from, &e);
 | |
| 
 | |
|    static const int shift = std::numeric_limits<boost::intmax_t>::digits - 1;
 | |
| 
 | |
|    while(!eval_is_zero(f))
 | |
|    {
 | |
|       // extract int sized bits from f:
 | |
|       eval_ldexp(f, f, shift);
 | |
|       eval_floor(term, f);
 | |
|       e -= shift;
 | |
|       eval_ldexp(to, to, shift);
 | |
|       typename boost::multiprecision::detail::canonical<boost::intmax_t, To>::type ll;
 | |
|       eval_convert_to(&ll, term);
 | |
|       eval_add(to, ll);
 | |
|       eval_subtract(f, term);
 | |
|    }
 | |
|    typedef typename To::exponent_type to_exponent;
 | |
|    if((e > (std::numeric_limits<to_exponent>::max)()) || (e < (std::numeric_limits<to_exponent>::min)()))
 | |
|    {
 | |
|       to = static_cast<const char*>("inf");
 | |
|       if(eval_get_sign(from) < 0)
 | |
|          to.negate();
 | |
|       return;
 | |
|    }
 | |
|    eval_ldexp(to, to, static_cast<to_exponent>(e));
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_rational>& /*to_type*/, const mpl::int_<number_kind_rational>& /*from_type*/)
 | |
| {
 | |
|    typedef typename component_type<number<To> >::type     to_component_type;
 | |
| 
 | |
|    number<From> t(from);
 | |
|    to_component_type n(numerator(t)), d(denominator(t));
 | |
|    using default_ops::assign_components;
 | |
|    assign_components(to, n.backend(), d.backend());
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_rational>& /*to_type*/, const mpl::int_<number_kind_integer>& /*from_type*/)
 | |
| {
 | |
|    typedef typename component_type<number<To> >::type     to_component_type;
 | |
| 
 | |
|    number<From> t(from);
 | |
|    to_component_type n(t), d(1);
 | |
|    using default_ops::assign_components;
 | |
|    assign_components(to, n.backend(), d.backend());
 | |
| }
 | |
| 
 | |
| template <class R, class LargeInteger>
 | |
| R safe_convert_to_float(const LargeInteger& i)
 | |
| {
 | |
|    using std::ldexp;
 | |
|    if(!i)
 | |
|       return R(0);
 | |
|    if(std::numeric_limits<R>::is_specialized && std::numeric_limits<R>::max_exponent)
 | |
|    {
 | |
|       LargeInteger val(i);
 | |
|       if(val.sign() < 0)
 | |
|          val = -val;
 | |
|       unsigned mb = msb(val);
 | |
|       if(mb >= std::numeric_limits<R>::max_exponent)
 | |
|       {
 | |
|          int scale_factor = (int)mb + 1 - std::numeric_limits<R>::max_exponent;
 | |
|          BOOST_ASSERT(scale_factor >= 1);
 | |
|          val >>= scale_factor;
 | |
|          R result = val.template convert_to<R>();
 | |
|          if(std::numeric_limits<R>::digits == 0 || std::numeric_limits<R>::digits >= std::numeric_limits<R>::max_exponent)
 | |
|          {
 | |
|             //
 | |
|             // Calculate and add on the remainder, only if there are more
 | |
|             // digits in the mantissa that the size of the exponent, in 
 | |
|             // other words if we are dropping digits in the conversion
 | |
|             // otherwise:
 | |
|             //
 | |
|             LargeInteger remainder(i);
 | |
|             remainder &= (LargeInteger(1) << scale_factor) - 1;
 | |
|             result += ldexp(safe_convert_to_float<R>(remainder), -scale_factor);
 | |
|          }
 | |
|          return i.sign() < 0 ? static_cast<R>(-result) : result;
 | |
|       }
 | |
|    }
 | |
|    return i.template convert_to<R>();
 | |
| }
 | |
| 
 | |
| template <class To, class Integer>
 | |
| inline typename disable_if_c<is_number<To>::value || is_floating_point<To>::value>::type 
 | |
|    generic_convert_rational_to_float_imp(To& result, const Integer& n, const Integer& d, const mpl::true_&)
 | |
| {
 | |
|    //
 | |
|    // If we get here, then there's something about one type or the other
 | |
|    // that prevents an exactly rounded result from being calculated
 | |
|    // (or at least it's not clear how to implement such a thing).
 | |
|    //
 | |
|    using default_ops::eval_divide;
 | |
|    number<To> fn(safe_convert_to_float<number<To> >(n)), fd(safe_convert_to_float<number<To> >(d));
 | |
|    eval_divide(result, fn.backend(), fd.backend());
 | |
| }
 | |
| template <class To, class Integer>
 | |
| inline typename enable_if_c<is_number<To>::value || is_floating_point<To>::value>::type 
 | |
|    generic_convert_rational_to_float_imp(To& result, const Integer& n, const Integer& d, const mpl::true_&)
 | |
| {
 | |
|    //
 | |
|    // If we get here, then there's something about one type or the other
 | |
|    // that prevents an exactly rounded result from being calculated
 | |
|    // (or at least it's not clear how to implement such a thing).
 | |
|    //
 | |
|    To fd(safe_convert_to_float<To>(d));
 | |
|    result = safe_convert_to_float<To>(n);
 | |
|    result /= fd;
 | |
| }
 | |
| 
 | |
| template <class To, class Integer>
 | |
| typename enable_if_c<is_number<To>::value || is_floating_point<To>::value>::type 
 | |
|    generic_convert_rational_to_float_imp(To& result, Integer& num, Integer& denom, const mpl::false_&)
 | |
| {
 | |
|    //
 | |
|    // If we get here, then the precision of type To is known, and the integer type is unbounded
 | |
|    // so we can use integer division plus manipulation of the remainder to get an exactly
 | |
|    // rounded result.
 | |
|    //
 | |
|    if(num == 0)
 | |
|    {
 | |
|       result = 0;
 | |
|       return;
 | |
|    }
 | |
|    bool s = false;
 | |
|    if(num < 0)
 | |
|    {
 | |
|       s = true;
 | |
|       num = -num;
 | |
|    }
 | |
|    int denom_bits = msb(denom);
 | |
|    int shift = std::numeric_limits<To>::digits + denom_bits - msb(num);
 | |
|    if(shift > 0)
 | |
|       num <<= shift;
 | |
|    else if(shift < 0)
 | |
|       denom <<= boost::multiprecision::detail::unsigned_abs(shift);
 | |
|    Integer q, r;
 | |
|    divide_qr(num, denom, q, r);
 | |
|    int q_bits = msb(q);
 | |
|    if(q_bits == std::numeric_limits<To>::digits - 1)
 | |
|    {
 | |
|       //
 | |
|       // Round up if 2 * r > denom:
 | |
|       //
 | |
|       r <<= 1;
 | |
|       int c = r.compare(denom);
 | |
|       if(c > 0)
 | |
|          ++q;
 | |
|       else if((c == 0) && (q & 1u))
 | |
|       {
 | |
|          ++q;
 | |
|       }
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       BOOST_ASSERT(q_bits == std::numeric_limits<To>::digits);
 | |
|       //
 | |
|       // We basically already have the rounding info:
 | |
|       //
 | |
|       if(q & 1u)
 | |
|       {
 | |
|          if(r || (q & 2u))
 | |
|             ++q;
 | |
|       }
 | |
|    }
 | |
|    using std::ldexp;
 | |
|    result = do_cast<To>(q);
 | |
|    result = ldexp(result, -shift);
 | |
|    if(s)
 | |
|       result = -result;
 | |
| }
 | |
| template <class To, class Integer>
 | |
| inline typename disable_if_c<is_number<To>::value || is_floating_point<To>::value>::type
 | |
|    generic_convert_rational_to_float_imp(To& result, Integer& num, Integer& denom, const mpl::false_& tag)
 | |
| {
 | |
|    number<To> t;
 | |
|    generic_convert_rational_to_float_imp(t, num, denom, tag);
 | |
|    result = t.backend();
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| inline void generic_convert_rational_to_float(To& result, const From& f)
 | |
| {
 | |
|    //
 | |
|    // Type From is always a Backend to number<>, or an
 | |
|    // instance of number<>, but we allow
 | |
|    // To to be either a Backend type, or a real number type,
 | |
|    // that way we can call this from generic conversions, and
 | |
|    // from specific conversions to built in types.
 | |
|    //
 | |
|    typedef typename mpl::if_c<is_number<From>::value, From, number<From> >::type actual_from_type;
 | |
|    typedef typename mpl::if_c<is_number<To>::value || is_floating_point<To>::value, To, number<To> >::type actual_to_type;
 | |
|    typedef typename component_type<actual_from_type>::type integer_type;
 | |
|    typedef mpl::bool_<!std::numeric_limits<integer_type>::is_specialized 
 | |
|                       || std::numeric_limits<integer_type>::is_bounded
 | |
|                       || !std::numeric_limits<actual_to_type>::is_specialized 
 | |
|                       || !std::numeric_limits<actual_to_type>::is_bounded
 | |
|                       || (std::numeric_limits<actual_to_type>::radix != 2)> dispatch_tag;
 | |
| 
 | |
|    integer_type n(numerator(static_cast<actual_from_type>(f))), d(denominator(static_cast<actual_from_type>(f)));
 | |
|    generic_convert_rational_to_float_imp(result, n, d, dispatch_tag());
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| inline void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_floating_point>& /*to_type*/, const mpl::int_<number_kind_rational>& /*from_type*/)
 | |
| {
 | |
|    generic_convert_rational_to_float(to, from);
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert_float2rational(To& to, const From& from, const mpl::int_<2>& /*radix*/)
 | |
| {
 | |
|    typedef typename mpl::front<typename To::unsigned_types>::type ui_type;
 | |
|    static const int shift = std::numeric_limits<boost::long_long_type>::digits;
 | |
|    typename From::exponent_type e;
 | |
|    typename component_type<number<To> >::type num, denom;
 | |
|    number<From> val(from);
 | |
|    val = frexp(val, &e);
 | |
|    while(val)
 | |
|    {
 | |
|       val = ldexp(val, shift);
 | |
|       e -= shift;
 | |
|       boost::long_long_type ll = boost::math::lltrunc(val);
 | |
|       val -= ll;
 | |
|       num <<= shift;
 | |
|       num += ll;
 | |
|    }
 | |
|    denom = ui_type(1u);
 | |
|    if(e < 0)
 | |
|       denom <<= -e;
 | |
|    else if(e > 0)
 | |
|       num <<= e;
 | |
|    assign_components(to, num.backend(), denom.backend());
 | |
| }
 | |
| 
 | |
| template <class To, class From, int Radix>
 | |
| void generic_interconvert_float2rational(To& to, const From& from, const mpl::int_<Radix>& /*radix*/)
 | |
| {
 | |
|    //
 | |
|    // This is almost the same as the binary case above, but we have to use
 | |
|    // scalbn and ilogb rather than ldexp and frexp, we also only extract
 | |
|    // one Radix digit at a time which is terribly inefficient!
 | |
|    //
 | |
|    typedef typename mpl::front<typename To::unsigned_types>::type ui_type;
 | |
|    typename From::exponent_type e;
 | |
|    typename component_type<number<To> >::type num, denom;
 | |
|    number<From> val(from);
 | |
|    e = ilogb(val);
 | |
|    val = scalbn(val, -e);
 | |
|    while(val)
 | |
|    {
 | |
|       boost::long_long_type ll = boost::math::lltrunc(val);
 | |
|       val -= ll;
 | |
|       val = scalbn(val, 1);
 | |
|       num *= Radix;
 | |
|       num += ll;
 | |
|       --e;
 | |
|    }
 | |
|    ++e;
 | |
|    denom = ui_type(Radix);
 | |
|    denom = pow(denom, abs(e));
 | |
|    if(e > 0)
 | |
|    {
 | |
|       num *= denom;
 | |
|       denom = 1;
 | |
|    }
 | |
|    assign_components(to, num.backend(), denom.backend());
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_rational>& /*to_type*/, const mpl::int_<number_kind_floating_point>& /*from_type*/)
 | |
| {
 | |
|    generic_interconvert_float2rational(to, from, mpl::int_<std::numeric_limits<number<From> >::radix>());
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_integer>& /*to_type*/, const mpl::int_<number_kind_rational>& /*from_type*/)
 | |
| {
 | |
|    number<From> t(from);
 | |
|    number<To> result(numerator(t) / denominator(t));
 | |
|    to = result.backend();
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert_float2int(To& to, const From& from, const mpl::int_<2>& /*radix*/)
 | |
| {
 | |
|    typedef typename From::exponent_type exponent_type;
 | |
|    static const exponent_type shift = std::numeric_limits<boost::long_long_type>::digits;
 | |
|    exponent_type e;
 | |
|    number<To>   num(0u);
 | |
|    number<From> val(from);
 | |
|    val = frexp(val, &e);
 | |
|    while(e > 0)
 | |
|    {
 | |
|       int s = (std::min)(e, shift);
 | |
|       val = ldexp(val, s);
 | |
|       e -= s;
 | |
|       boost::long_long_type ll = boost::math::lltrunc(val);
 | |
|       val -= ll;
 | |
|       num <<= s;
 | |
|       num += ll;
 | |
|    }
 | |
|    to = num.backend();
 | |
| }
 | |
| 
 | |
| template <class To, class From, int Radix>
 | |
| void generic_interconvert_float2int(To& to, const From& from, const mpl::int_<Radix>& /*radix*/)
 | |
| {
 | |
|    //
 | |
|    // This is almost the same as the binary case above, but we have to use
 | |
|    // scalbn and ilogb rather than ldexp and frexp, we also only extract
 | |
|    // one Radix digit at a time which is terribly inefficient!
 | |
|    //
 | |
|    typename From::exponent_type e;
 | |
|    number<To> num(0u);
 | |
|    number<From> val(from);
 | |
|    e = ilogb(val);
 | |
|    val = scalbn(val, -e);
 | |
|    while(e >= 0)
 | |
|    {
 | |
|       boost::long_long_type ll = boost::math::lltrunc(val);
 | |
|       val -= ll;
 | |
|       val = scalbn(val, 1);
 | |
|       num *= Radix;
 | |
|       num += ll;
 | |
|       --e;
 | |
|    }
 | |
|    to = num.backend();
 | |
| }
 | |
| 
 | |
| template <class To, class From>
 | |
| void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_integer>& /*to_type*/, const mpl::int_<number_kind_floating_point>& /*from_type*/)
 | |
| {
 | |
|    generic_interconvert_float2int(to, from, mpl::int_<std::numeric_limits<number<From> >::radix>());
 | |
| }
 | |
| 
 | |
| }
 | |
| }
 | |
| } // namespaces
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| #endif  // BOOST_MP_GENERIC_INTERCONVERT_HPP
 | |
| 
 | 
