528 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			528 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // boost\math\distributions\poisson.hpp
 | |
| 
 | |
| // Copyright John Maddock 2006.
 | |
| // Copyright Paul A. Bristow 2007.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Poisson distribution is a discrete probability distribution.
 | |
| // It expresses the probability of a number (k) of
 | |
| // events, occurrences, failures or arrivals occurring in a fixed time,
 | |
| // assuming these events occur with a known average or mean rate (lambda)
 | |
| // and are independent of the time since the last event.
 | |
| // The distribution was discovered by Simeon-Denis Poisson (1781-1840).
 | |
| 
 | |
| // Parameter lambda is the mean number of events in the given time interval.
 | |
| // The random variate k is the number of events, occurrences or arrivals.
 | |
| // k argument may be integral, signed, or unsigned, or floating point.
 | |
| // If necessary, it has already been promoted from an integral type.
 | |
| 
 | |
| // Note that the Poisson distribution
 | |
| // (like others including the binomial, negative binomial & Bernoulli)
 | |
| // is strictly defined as a discrete function:
 | |
| // only integral values of k are envisaged.
 | |
| // However because the method of calculation uses a continuous gamma function,
 | |
| // it is convenient to treat it as if a continous function,
 | |
| // and permit non-integral values of k.
 | |
| // To enforce the strict mathematical model, users should use floor or ceil functions
 | |
| // on k outside this function to ensure that k is integral.
 | |
| 
 | |
| // See http://en.wikipedia.org/wiki/Poisson_distribution
 | |
| // http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
 | |
| 
 | |
| #ifndef BOOST_MATH_SPECIAL_POISSON_HPP
 | |
| #define BOOST_MATH_SPECIAL_POISSON_HPP
 | |
| 
 | |
| #include <boost/math/distributions/fwd.hpp>
 | |
| #include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
 | |
| #include <boost/math/special_functions/trunc.hpp> // for incomplete gamma. gamma_q
 | |
| #include <boost/math/distributions/complement.hpp> // complements
 | |
| #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
 | |
| #include <boost/math/special_functions/fpclassify.hpp> // isnan.
 | |
| #include <boost/math/special_functions/factorials.hpp> // factorials.
 | |
| #include <boost/math/tools/roots.hpp> // for root finding.
 | |
| #include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
 | |
| 
 | |
| #include <utility>
 | |
| 
 | |
| namespace boost
 | |
| {
 | |
|   namespace math
 | |
|   {
 | |
|     namespace poisson_detail
 | |
|     {
 | |
|       // Common error checking routines for Poisson distribution functions.
 | |
|       // These are convoluted, & apparently redundant, to try to ensure that
 | |
|       // checks are always performed, even if exceptions are not enabled.
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol)
 | |
|       {
 | |
|         if(!(boost::math::isfinite)(mean) || (mean < 0))
 | |
|         {
 | |
|           *result = policies::raise_domain_error<RealType>(
 | |
|             function,
 | |
|             "Mean argument is %1%, but must be >= 0 !", mean, pol);
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       } // bool check_mean
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_mean_NZ(const char* function, const RealType& mean, RealType* result, const Policy& pol)
 | |
|       { // mean == 0 is considered an error.
 | |
|         if( !(boost::math::isfinite)(mean) || (mean <= 0))
 | |
|         {
 | |
|           *result = policies::raise_domain_error<RealType>(
 | |
|             function,
 | |
|             "Mean argument is %1%, but must be > 0 !", mean, pol);
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       } // bool check_mean_NZ
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_dist(const char* function, const RealType& mean, RealType* result, const Policy& pol)
 | |
|       { // Only one check, so this is redundant really but should be optimized away.
 | |
|         return check_mean_NZ(function, mean, result, pol);
 | |
|       } // bool check_dist
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_k(const char* function, const RealType& k, RealType* result, const Policy& pol)
 | |
|       {
 | |
|         if((k < 0) || !(boost::math::isfinite)(k))
 | |
|         {
 | |
|           *result = policies::raise_domain_error<RealType>(
 | |
|             function,
 | |
|             "Number of events k argument is %1%, but must be >= 0 !", k, pol);
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       } // bool check_k
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_dist_and_k(const char* function, RealType mean, RealType k, RealType* result, const Policy& pol)
 | |
|       {
 | |
|         if((check_dist(function, mean, result, pol) == false) ||
 | |
|           (check_k(function, k, result, pol) == false))
 | |
|         {
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       } // bool check_dist_and_k
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
 | |
|       { // Check 0 <= p <= 1
 | |
|         if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
 | |
|         {
 | |
|           *result = policies::raise_domain_error<RealType>(
 | |
|             function,
 | |
|             "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol);
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       } // bool check_prob
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_dist_and_prob(const char* function, RealType mean,  RealType p, RealType* result, const Policy& pol)
 | |
|       {
 | |
|         if((check_dist(function, mean, result, pol) == false) ||
 | |
|           (check_prob(function, p, result, pol) == false))
 | |
|         {
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       } // bool check_dist_and_prob
 | |
| 
 | |
|     } // namespace poisson_detail
 | |
| 
 | |
|     template <class RealType = double, class Policy = policies::policy<> >
 | |
|     class poisson_distribution
 | |
|     {
 | |
|     public:
 | |
|       typedef RealType value_type;
 | |
|       typedef Policy policy_type;
 | |
| 
 | |
|       poisson_distribution(RealType l_mean = 1) : m_l(l_mean) // mean (lambda).
 | |
|       { // Expected mean number of events that occur during the given interval.
 | |
|         RealType r;
 | |
|         poisson_detail::check_dist(
 | |
|            "boost::math::poisson_distribution<%1%>::poisson_distribution",
 | |
|           m_l,
 | |
|           &r, Policy());
 | |
|       } // poisson_distribution constructor.
 | |
| 
 | |
|       RealType mean() const
 | |
|       { // Private data getter function.
 | |
|         return m_l;
 | |
|       }
 | |
|     private:
 | |
|       // Data member, initialized by constructor.
 | |
|       RealType m_l; // mean number of occurrences.
 | |
|     }; // template <class RealType, class Policy> class poisson_distribution
 | |
| 
 | |
|     typedef poisson_distribution<double> poisson; // Reserved name of type double.
 | |
| 
 | |
|     // Non-member functions to give properties of the distribution.
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline const std::pair<RealType, RealType> range(const poisson_distribution<RealType, Policy>& /* dist */)
 | |
|     { // Range of permissible values for random variable k.
 | |
|        using boost::math::tools::max_value;
 | |
|        return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
 | |
|     }
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline const std::pair<RealType, RealType> support(const poisson_distribution<RealType, Policy>& /* dist */)
 | |
|     { // Range of supported values for random variable k.
 | |
|        // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
 | |
|        using boost::math::tools::max_value;
 | |
|        return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
 | |
|     }
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType mean(const poisson_distribution<RealType, Policy>& dist)
 | |
|     { // Mean of poisson distribution = lambda.
 | |
|       return dist.mean();
 | |
|     } // mean
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType mode(const poisson_distribution<RealType, Policy>& dist)
 | |
|     { // mode.
 | |
|       BOOST_MATH_STD_USING // ADL of std functions.
 | |
|       return floor(dist.mean());
 | |
|     }
 | |
| 
 | |
|     //template <class RealType, class Policy>
 | |
|     //inline RealType median(const poisson_distribution<RealType, Policy>& dist)
 | |
|     //{ // median = approximately lambda + 1/3 - 0.2/lambda
 | |
|     //  RealType l = dist.mean();
 | |
|     //  return dist.mean() + static_cast<RealType>(0.3333333333333333333333333333333333333333333333)
 | |
|     //   - static_cast<RealType>(0.2) / l;
 | |
|     //} // BUT this formula appears to be out-by-one compared to quantile(half)
 | |
|     // Query posted on Wikipedia.
 | |
|     // Now implemented via quantile(half) in derived accessors.
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType variance(const poisson_distribution<RealType, Policy>& dist)
 | |
|     { // variance.
 | |
|       return dist.mean();
 | |
|     }
 | |
| 
 | |
|     // RealType standard_deviation(const poisson_distribution<RealType, Policy>& dist)
 | |
|     // standard_deviation provided by derived accessors.
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType skewness(const poisson_distribution<RealType, Policy>& dist)
 | |
|     { // skewness = sqrt(l).
 | |
|       BOOST_MATH_STD_USING // ADL of std functions.
 | |
|       return 1 / sqrt(dist.mean());
 | |
|     }
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType kurtosis_excess(const poisson_distribution<RealType, Policy>& dist)
 | |
|     { // skewness = sqrt(l).
 | |
|       return 1 / dist.mean(); // kurtosis_excess 1/mean from Wiki & MathWorld eq 31.
 | |
|       // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess
 | |
|       // is more convenient because the kurtosis excess of a normal distribution is zero
 | |
|       // whereas the true kurtosis is 3.
 | |
|     } // RealType kurtosis_excess
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType kurtosis(const poisson_distribution<RealType, Policy>& dist)
 | |
|     { // kurtosis is 4th moment about the mean = u4 / sd ^ 4
 | |
|       // http://en.wikipedia.org/wiki/Curtosis
 | |
|       // kurtosis can range from -2 (flat top) to +infinity (sharp peak & heavy tails).
 | |
|       // http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
 | |
|       return 3 + 1 / dist.mean(); // NIST.
 | |
|       // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess
 | |
|       // is more convenient because the kurtosis excess of a normal distribution is zero
 | |
|       // whereas the true kurtosis is 3.
 | |
|     } // RealType kurtosis
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     RealType pdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
 | |
|     { // Probability Density/Mass Function.
 | |
|       // Probability that there are EXACTLY k occurrences (or arrivals).
 | |
|       BOOST_FPU_EXCEPTION_GUARD
 | |
| 
 | |
|       BOOST_MATH_STD_USING // for ADL of std functions.
 | |
| 
 | |
|       RealType mean = dist.mean();
 | |
|       // Error check:
 | |
|       RealType result = 0;
 | |
|       if(false == poisson_detail::check_dist_and_k(
 | |
|         "boost::math::pdf(const poisson_distribution<%1%>&, %1%)",
 | |
|         mean,
 | |
|         k,
 | |
|         &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
| 
 | |
|       // Special case of mean zero, regardless of the number of events k.
 | |
|       if (mean == 0)
 | |
|       { // Probability for any k is zero.
 | |
|         return 0;
 | |
|       }
 | |
|       if (k == 0)
 | |
|       { // mean ^ k = 1, and k! = 1, so can simplify.
 | |
|         return exp(-mean);
 | |
|       }
 | |
|       return boost::math::gamma_p_derivative(k+1, mean, Policy());
 | |
|     } // pdf
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     RealType cdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
 | |
|     { // Cumulative Distribution Function Poisson.
 | |
|       // The random variate k is the number of occurrences(or arrivals)
 | |
|       // k argument may be integral, signed, or unsigned, or floating point.
 | |
|       // If necessary, it has already been promoted from an integral type.
 | |
|       // Returns the sum of the terms 0 through k of the Poisson Probability Density or Mass (pdf).
 | |
| 
 | |
|       // But note that the Poisson distribution
 | |
|       // (like others including the binomial, negative binomial & Bernoulli)
 | |
|       // is strictly defined as a discrete function: only integral values of k are envisaged.
 | |
|       // However because of the method of calculation using a continuous gamma function,
 | |
|       // it is convenient to treat it as if it is a continous function
 | |
|       // and permit non-integral values of k.
 | |
|       // To enforce the strict mathematical model, users should use floor or ceil functions
 | |
|       // outside this function to ensure that k is integral.
 | |
| 
 | |
|       // The terms are not summed directly (at least for larger k)
 | |
|       // instead the incomplete gamma integral is employed,
 | |
| 
 | |
|       BOOST_MATH_STD_USING // for ADL of std function exp.
 | |
| 
 | |
|       RealType mean = dist.mean();
 | |
|       // Error checks:
 | |
|       RealType result = 0;
 | |
|       if(false == poisson_detail::check_dist_and_k(
 | |
|         "boost::math::cdf(const poisson_distribution<%1%>&, %1%)",
 | |
|         mean,
 | |
|         k,
 | |
|         &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
|       // Special cases:
 | |
|       if (mean == 0)
 | |
|       { // Probability for any k is zero.
 | |
|         return 0;
 | |
|       }
 | |
|       if (k == 0)
 | |
|       { // return pdf(dist, static_cast<RealType>(0));
 | |
|         // but mean (and k) have already been checked,
 | |
|         // so this avoids unnecessary repeated checks.
 | |
|        return exp(-mean);
 | |
|       }
 | |
|       // For small integral k could use a finite sum -
 | |
|       // it's cheaper than the gamma function.
 | |
|       // BUT this is now done efficiently by gamma_q function.
 | |
|       // Calculate poisson cdf using the gamma_q function.
 | |
|       return gamma_q(k+1, mean, Policy());
 | |
|     } // binomial cdf
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     RealType cdf(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c)
 | |
|     { // Complemented Cumulative Distribution Function Poisson
 | |
|       // The random variate k is the number of events, occurrences or arrivals.
 | |
|       // k argument may be integral, signed, or unsigned, or floating point.
 | |
|       // If necessary, it has already been promoted from an integral type.
 | |
|       // But note that the Poisson distribution
 | |
|       // (like others including the binomial, negative binomial & Bernoulli)
 | |
|       // is strictly defined as a discrete function: only integral values of k are envisaged.
 | |
|       // However because of the method of calculation using a continuous gamma function,
 | |
|       // it is convenient to treat it as is it is a continous function
 | |
|       // and permit non-integral values of k.
 | |
|       // To enforce the strict mathematical model, users should use floor or ceil functions
 | |
|       // outside this function to ensure that k is integral.
 | |
| 
 | |
|       // Returns the sum of the terms k+1 through inf of the Poisson Probability Density/Mass (pdf).
 | |
|       // The terms are not summed directly (at least for larger k)
 | |
|       // instead the incomplete gamma integral is employed,
 | |
| 
 | |
|       RealType const& k = c.param;
 | |
|       poisson_distribution<RealType, Policy> const& dist = c.dist;
 | |
| 
 | |
|       RealType mean = dist.mean();
 | |
| 
 | |
|       // Error checks:
 | |
|       RealType result = 0;
 | |
|       if(false == poisson_detail::check_dist_and_k(
 | |
|         "boost::math::cdf(const poisson_distribution<%1%>&, %1%)",
 | |
|         mean,
 | |
|         k,
 | |
|         &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
|       // Special case of mean, regardless of the number of events k.
 | |
|       if (mean == 0)
 | |
|       { // Probability for any k is unity, complement of zero.
 | |
|         return 1;
 | |
|       }
 | |
|       if (k == 0)
 | |
|       { // Avoid repeated checks on k and mean in gamma_p.
 | |
|          return -boost::math::expm1(-mean, Policy());
 | |
|       }
 | |
|       // Unlike un-complemented cdf (sum from 0 to k),
 | |
|       // can't use finite sum from k+1 to infinity for small integral k,
 | |
|       // anyway it is now done efficiently by gamma_p.
 | |
|       return gamma_p(k + 1, mean, Policy()); // Calculate Poisson cdf using the gamma_p function.
 | |
|       // CCDF = gamma_p(k+1, lambda)
 | |
|     } // poisson ccdf
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType quantile(const poisson_distribution<RealType, Policy>& dist, const RealType& p)
 | |
|     { // Quantile (or Percent Point) Poisson function.
 | |
|       // Return the number of expected events k for a given probability p.
 | |
|       static const char* function = "boost::math::quantile(const poisson_distribution<%1%>&, %1%)";
 | |
|       RealType result = 0; // of Argument checks:
 | |
|       if(false == poisson_detail::check_prob(
 | |
|         function,
 | |
|         p,
 | |
|         &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
|       // Special case:
 | |
|       if (dist.mean() == 0)
 | |
|       { // if mean = 0 then p = 0, so k can be anything?
 | |
|          if (false == poisson_detail::check_mean_NZ(
 | |
|          function,
 | |
|          dist.mean(),
 | |
|          &result, Policy()))
 | |
|         {
 | |
|           return result;
 | |
|         }
 | |
|       }
 | |
|       if(p == 0)
 | |
|       {
 | |
|          return 0; // Exact result regardless of discrete-quantile Policy
 | |
|       }
 | |
|       if(p == 1)
 | |
|       {
 | |
|          return policies::raise_overflow_error<RealType>(function, 0, Policy());
 | |
|       }
 | |
|       typedef typename Policy::discrete_quantile_type discrete_type;
 | |
|       boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
 | |
|       RealType guess, factor = 8;
 | |
|       RealType z = dist.mean();
 | |
|       if(z < 1)
 | |
|          guess = z;
 | |
|       else
 | |
|          guess = boost::math::detail::inverse_poisson_cornish_fisher(z, p, RealType(1-p), Policy());
 | |
|       if(z > 5)
 | |
|       {
 | |
|          if(z > 1000)
 | |
|             factor = 1.01f;
 | |
|          else if(z > 50)
 | |
|             factor = 1.1f;
 | |
|          else if(guess > 10)
 | |
|             factor = 1.25f;
 | |
|          else
 | |
|             factor = 2;
 | |
|          if(guess < 1.1)
 | |
|             factor = 8;
 | |
|       }
 | |
| 
 | |
|       return detail::inverse_discrete_quantile(
 | |
|          dist,
 | |
|          p,
 | |
|          false,
 | |
|          guess,
 | |
|          factor,
 | |
|          RealType(1),
 | |
|          discrete_type(),
 | |
|          max_iter);
 | |
|    } // quantile
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType quantile(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c)
 | |
|     { // Quantile (or Percent Point) of Poisson function.
 | |
|       // Return the number of expected events k for a given
 | |
|       // complement of the probability q.
 | |
|       //
 | |
|       // Error checks:
 | |
|       static const char* function = "boost::math::quantile(complement(const poisson_distribution<%1%>&, %1%))";
 | |
|       RealType q = c.param;
 | |
|       const poisson_distribution<RealType, Policy>& dist = c.dist;
 | |
|       RealType result = 0;  // of argument checks.
 | |
|       if(false == poisson_detail::check_prob(
 | |
|         function,
 | |
|         q,
 | |
|         &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
|       // Special case:
 | |
|       if (dist.mean() == 0)
 | |
|       { // if mean = 0 then p = 0, so k can be anything?
 | |
|          if (false == poisson_detail::check_mean_NZ(
 | |
|          function,
 | |
|          dist.mean(),
 | |
|          &result, Policy()))
 | |
|         {
 | |
|           return result;
 | |
|         }
 | |
|       }
 | |
|       if(q == 0)
 | |
|       {
 | |
|          return policies::raise_overflow_error<RealType>(function, 0, Policy());
 | |
|       }
 | |
|       if(q == 1)
 | |
|       {
 | |
|          return 0;  // Exact result regardless of discrete-quantile Policy
 | |
|       }
 | |
|       typedef typename Policy::discrete_quantile_type discrete_type;
 | |
|       boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
 | |
|       RealType guess, factor = 8;
 | |
|       RealType z = dist.mean();
 | |
|       if(z < 1)
 | |
|          guess = z;
 | |
|       else
 | |
|          guess = boost::math::detail::inverse_poisson_cornish_fisher(z, RealType(1-q), q, Policy());
 | |
|       if(z > 5)
 | |
|       {
 | |
|          if(z > 1000)
 | |
|             factor = 1.01f;
 | |
|          else if(z > 50)
 | |
|             factor = 1.1f;
 | |
|          else if(guess > 10)
 | |
|             factor = 1.25f;
 | |
|          else
 | |
|             factor = 2;
 | |
|          if(guess < 1.1)
 | |
|             factor = 8;
 | |
|       }
 | |
| 
 | |
|       return detail::inverse_discrete_quantile(
 | |
|          dist,
 | |
|          q,
 | |
|          true,
 | |
|          guess,
 | |
|          factor,
 | |
|          RealType(1),
 | |
|          discrete_type(),
 | |
|          max_iter);
 | |
|    } // quantile complement.
 | |
| 
 | |
|   } // namespace math
 | |
| } // namespace boost
 | |
| 
 | |
| // This include must be at the end, *after* the accessors
 | |
| // for this distribution have been defined, in order to
 | |
| // keep compilers that support two-phase lookup happy.
 | |
| #include <boost/math/distributions/detail/derived_accessors.hpp>
 | |
| #include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
 | |
| 
 | |
| #endif // BOOST_MATH_SPECIAL_POISSON_HPP
 | |
| 
 | |
| 
 | |
| 
 | 
