287 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			287 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //---------------------------------------------------------------------------//
 | |
| // Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
 | |
| //
 | |
| // Distributed under the Boost Software License, Version 1.0
 | |
| // See accompanying file LICENSE_1_0.txt or copy at
 | |
| // http://www.boost.org/LICENSE_1_0.txt
 | |
| //
 | |
| // See http://boostorg.github.com/compute for more information.
 | |
| //---------------------------------------------------------------------------//
 | |
| 
 | |
| #ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP
 | |
| #define BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP
 | |
| 
 | |
| #include <iterator>
 | |
| 
 | |
| #include <boost/compute/utility/source.hpp>
 | |
| #include <boost/compute/program.hpp>
 | |
| #include <boost/compute/command_queue.hpp>
 | |
| #include <boost/compute/detail/vendor.hpp>
 | |
| #include <boost/compute/detail/parameter_cache.hpp>
 | |
| #include <boost/compute/detail/work_size.hpp>
 | |
| #include <boost/compute/detail/meta_kernel.hpp>
 | |
| #include <boost/compute/type_traits/type_name.hpp>
 | |
| #include <boost/compute/utility/program_cache.hpp>
 | |
| 
 | |
| namespace boost {
 | |
| namespace compute {
 | |
| namespace detail {
 | |
| 
 | |
| /// \internal
 | |
| /// body reduction inside a warp
 | |
| template<typename T,bool isNvidiaDevice>
 | |
| struct ReduceBody
 | |
| {
 | |
|     static std::string body()
 | |
|     {
 | |
|         std::stringstream k;
 | |
|         // local reduction
 | |
|         k << "for(int i = 1; i < TPB; i <<= 1){\n" <<
 | |
|              "   barrier(CLK_LOCAL_MEM_FENCE);\n"  <<
 | |
|              "   uint mask = (i << 1) - 1;\n"      <<
 | |
|              "   if((lid & mask) == 0){\n"         <<
 | |
|              "       scratch[lid] += scratch[lid+i];\n" <<
 | |
|              "   }\n" <<
 | |
|             "}\n";
 | |
|         return k.str();
 | |
|     }
 | |
| };
 | |
| 
 | |
| /// \internal
 | |
| /// body reduction inside a warp
 | |
| /// for nvidia device we can use the "unsafe"
 | |
| /// memory optimisation
 | |
| template<typename T>
 | |
| struct ReduceBody<T,true>
 | |
| {
 | |
|     static std::string body()
 | |
|     {
 | |
|         std::stringstream k;
 | |
|         // local reduction
 | |
|         // we use TPB to compile only useful instruction
 | |
|         // local reduction when size is greater than warp size
 | |
|         k << "barrier(CLK_LOCAL_MEM_FENCE);\n" <<
 | |
|         "if(TPB >= 1024){\n" <<
 | |
|             "if(lid < 512) { sum += scratch[lid + 512]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
 | |
|          "if(TPB >= 512){\n" <<
 | |
|             "if(lid < 256) { sum += scratch[lid + 256]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
 | |
|          "if(TPB >= 256){\n" <<
 | |
|             "if(lid < 128) { sum += scratch[lid + 128]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
 | |
|          "if(TPB >= 128){\n" <<
 | |
|             "if(lid < 64) { sum += scratch[lid + 64]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);} \n" <<
 | |
| 
 | |
|         // warp reduction
 | |
|         "if(lid < 32){\n" <<
 | |
|             // volatile this way we don't need any barrier
 | |
|             "volatile __local " << type_name<T>() << " *lmem = scratch;\n" <<
 | |
|             "if(TPB >= 64) { lmem[lid] = sum = sum + lmem[lid+32];} \n" <<
 | |
|             "if(TPB >= 32) { lmem[lid] = sum = sum + lmem[lid+16];} \n" <<
 | |
|             "if(TPB >= 16) { lmem[lid] = sum = sum + lmem[lid+ 8];} \n" <<
 | |
|             "if(TPB >=  8) { lmem[lid] = sum = sum + lmem[lid+ 4];} \n" <<
 | |
|             "if(TPB >=  4) { lmem[lid] = sum = sum + lmem[lid+ 2];} \n" <<
 | |
|             "if(TPB >=  2) { lmem[lid] = sum = sum + lmem[lid+ 1];} \n" <<
 | |
|         "}\n";
 | |
|         return k.str();
 | |
|     }
 | |
| };
 | |
| 
 | |
| template<class InputIterator, class Function>
 | |
| inline void initial_reduce(InputIterator first,
 | |
|                            InputIterator last,
 | |
|                            buffer result,
 | |
|                            const Function &function,
 | |
|                            kernel &reduce_kernel,
 | |
|                            const uint_ vpt,
 | |
|                            const uint_ tpb,
 | |
|                            command_queue &queue)
 | |
| {
 | |
|     (void) function;
 | |
|     (void) reduce_kernel;
 | |
| 
 | |
|     typedef typename std::iterator_traits<InputIterator>::value_type Arg;
 | |
|     typedef typename boost::tr1_result_of<Function(Arg, Arg)>::type T;
 | |
| 
 | |
|     size_t count = std::distance(first, last);
 | |
|     detail::meta_kernel k("initial_reduce");
 | |
|     k.add_set_arg<const uint_>("count", uint_(count));
 | |
|     size_t output_arg = k.add_arg<T *>(memory_object::global_memory, "output");
 | |
| 
 | |
|     k <<
 | |
|         k.decl<const uint_>("offset") << " = get_group_id(0) * VPT * TPB;\n" <<
 | |
|         k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
 | |
| 
 | |
|         "__local " << type_name<T>() << " scratch[TPB];\n" <<
 | |
| 
 | |
|         // private reduction
 | |
|         k.decl<T>("sum") << " = 0;\n" <<
 | |
|         "for(uint i = 0; i < VPT; i++){\n" <<
 | |
|         "    if(offset + lid + i*TPB < count){\n" <<
 | |
|         "        sum = sum + " << first[k.var<uint_>("offset+lid+i*TPB")] << ";\n" <<
 | |
|         "    }\n" <<
 | |
|         "}\n" <<
 | |
| 
 | |
|         "scratch[lid] = sum;\n" <<
 | |
| 
 | |
|         // local reduction
 | |
|         ReduceBody<T,false>::body() <<
 | |
| 
 | |
|         // write sum to output
 | |
|         "if(lid == 0){\n" <<
 | |
|         "    output[get_group_id(0)] = scratch[0];\n" <<
 | |
|         "}\n";
 | |
| 
 | |
|     const context &context = queue.get_context();
 | |
|     std::stringstream options;
 | |
|     options << "-DVPT=" << vpt << " -DTPB=" << tpb;
 | |
|     kernel generic_reduce_kernel = k.compile(context, options.str());
 | |
|     generic_reduce_kernel.set_arg(output_arg, result);
 | |
| 
 | |
|     size_t work_size = calculate_work_size(count, vpt, tpb);
 | |
| 
 | |
|     queue.enqueue_1d_range_kernel(generic_reduce_kernel, 0, work_size, tpb);
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| inline void initial_reduce(const buffer_iterator<T> &first,
 | |
|                            const buffer_iterator<T> &last,
 | |
|                            const buffer &result,
 | |
|                            const plus<T> &function,
 | |
|                            kernel &reduce_kernel,
 | |
|                            const uint_ vpt,
 | |
|                            const uint_ tpb,
 | |
|                            command_queue &queue)
 | |
| {
 | |
|     (void) function;
 | |
| 
 | |
|     size_t count = std::distance(first, last);
 | |
| 
 | |
|     reduce_kernel.set_arg(0, first.get_buffer());
 | |
|     reduce_kernel.set_arg(1, uint_(first.get_index()));
 | |
|     reduce_kernel.set_arg(2, uint_(count));
 | |
|     reduce_kernel.set_arg(3, result);
 | |
|     reduce_kernel.set_arg(4, uint_(0));
 | |
| 
 | |
|     size_t work_size = calculate_work_size(count, vpt, tpb);
 | |
| 
 | |
|     queue.enqueue_1d_range_kernel(reduce_kernel, 0, work_size, tpb);
 | |
| }
 | |
| 
 | |
| template<class InputIterator, class T, class Function>
 | |
| inline void reduce_on_gpu(InputIterator first,
 | |
|                           InputIterator last,
 | |
|                           buffer_iterator<T> result,
 | |
|                           Function function,
 | |
|                           command_queue &queue)
 | |
| {
 | |
|     const device &device = queue.get_device();
 | |
|     const context &context = queue.get_context();
 | |
| 
 | |
|     detail::meta_kernel k("reduce");
 | |
|     k.add_arg<const T*>(memory_object::global_memory, "input");
 | |
|     k.add_arg<const uint_>("offset");
 | |
|     k.add_arg<const uint_>("count");
 | |
|     k.add_arg<T*>(memory_object::global_memory, "output");
 | |
|     k.add_arg<const uint_>("output_offset");
 | |
| 
 | |
|     k <<
 | |
|         k.decl<const uint_>("block_offset") << " = get_group_id(0) * VPT * TPB;\n" <<
 | |
|         "__global const " << type_name<T>() << " *block = input + offset + block_offset;\n" <<
 | |
|         k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
 | |
| 
 | |
|         "__local " << type_name<T>() << " scratch[TPB];\n" <<
 | |
|         // private reduction
 | |
|         k.decl<T>("sum") << " = 0;\n" <<
 | |
|         "for(uint i = 0; i < VPT; i++){\n" <<
 | |
|         "    if(block_offset + lid + i*TPB < count){\n" <<
 | |
|         "        sum = sum + block[lid+i*TPB]; \n" <<
 | |
|         "    }\n" <<
 | |
|         "}\n" <<
 | |
| 
 | |
|         "scratch[lid] = sum;\n";
 | |
| 
 | |
|     // discrimination on vendor name
 | |
|     if(is_nvidia_device(device))
 | |
|         k << ReduceBody<T,true>::body();
 | |
|     else
 | |
|         k << ReduceBody<T,false>::body();
 | |
| 
 | |
|     k <<
 | |
|         // write sum to output
 | |
|          "if(lid == 0){\n" <<
 | |
|          "    output[output_offset + get_group_id(0)] = scratch[0];\n" <<
 | |
|          "}\n";
 | |
| 
 | |
|     std::string cache_key = std::string("__boost_reduce_on_gpu_") + type_name<T>();
 | |
| 
 | |
|     // load parameters
 | |
|     boost::shared_ptr<parameter_cache> parameters =
 | |
|         detail::parameter_cache::get_global_cache(device);
 | |
| 
 | |
|     uint_ vpt = parameters->get(cache_key, "vpt", 8);
 | |
|     uint_ tpb = parameters->get(cache_key, "tpb", 128);
 | |
| 
 | |
|     // reduce program compiler flags
 | |
|     std::stringstream options;
 | |
|     options << "-DT=" << type_name<T>()
 | |
|             << " -DVPT=" << vpt
 | |
|             << " -DTPB=" << tpb;
 | |
| 
 | |
|     // load program
 | |
|     boost::shared_ptr<program_cache> cache =
 | |
|         program_cache::get_global_cache(context);
 | |
| 
 | |
|     program reduce_program = cache->get_or_build(
 | |
|         cache_key, options.str(), k.source(), context
 | |
|     );
 | |
| 
 | |
|     // create reduce kernel
 | |
|     kernel reduce_kernel(reduce_program, "reduce");
 | |
| 
 | |
|     size_t count = std::distance(first, last);
 | |
| 
 | |
|     // first pass, reduce from input to ping
 | |
|     buffer ping(context, std::ceil(float(count) / vpt / tpb) * sizeof(T));
 | |
|     initial_reduce(first, last, ping, function, reduce_kernel, vpt, tpb, queue);
 | |
| 
 | |
|     // update count after initial reduce
 | |
|     count = static_cast<size_t>(std::ceil(float(count) / vpt / tpb));
 | |
| 
 | |
|     // middle pass(es), reduce between ping and pong
 | |
|     const buffer *input_buffer = &ping;
 | |
|     buffer pong(context, static_cast<size_t>(count / vpt / tpb * sizeof(T)));
 | |
|     const buffer *output_buffer = &pong;
 | |
|     if(count > vpt * tpb){
 | |
|         while(count > vpt * tpb){
 | |
|             reduce_kernel.set_arg(0, *input_buffer);
 | |
|             reduce_kernel.set_arg(1, uint_(0));
 | |
|             reduce_kernel.set_arg(2, uint_(count));
 | |
|             reduce_kernel.set_arg(3, *output_buffer);
 | |
|             reduce_kernel.set_arg(4, uint_(0));
 | |
| 
 | |
|             size_t work_size = static_cast<size_t>(std::ceil(float(count) / vpt));
 | |
|             if(work_size % tpb != 0){
 | |
|                 work_size += tpb - work_size % tpb;
 | |
|             }
 | |
|             queue.enqueue_1d_range_kernel(reduce_kernel, 0, work_size, tpb);
 | |
| 
 | |
|             std::swap(input_buffer, output_buffer);
 | |
|             count = static_cast<size_t>(std::ceil(float(count) / vpt / tpb));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // final pass, reduce from ping/pong to result
 | |
|     reduce_kernel.set_arg(0, *input_buffer);
 | |
|     reduce_kernel.set_arg(1, uint_(0));
 | |
|     reduce_kernel.set_arg(2, uint_(count));
 | |
|     reduce_kernel.set_arg(3, result.get_buffer());
 | |
|     reduce_kernel.set_arg(4, uint_(result.get_index()));
 | |
| 
 | |
|     queue.enqueue_1d_range_kernel(reduce_kernel, 0, tpb, tpb);
 | |
| }
 | |
| 
 | |
| } // end detail namespace
 | |
| } // end compute namespace
 | |
| } // end boost namespace
 | |
| 
 | |
| #endif // BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP
 | 
