199 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			199 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //
 | |
| //  Copyright (c) 2000-2002
 | |
| //  Joerg Walter, Mathias Koch
 | |
| //
 | |
| //  Distributed under the Boost Software License, Version 1.0. (See
 | |
| //  accompanying file LICENSE_1_0.txt or copy at
 | |
| //  http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| //  The authors gratefully acknowledge the support of
 | |
| //  GeNeSys mbH & Co. KG in producing this work.
 | |
| //
 | |
| 
 | |
| #ifndef _BOOST_UBLAS_OPERATION_SPARSE_
 | |
| #define _BOOST_UBLAS_OPERATION_SPARSE_
 | |
| 
 | |
| #include <boost/numeric/ublas/traits.hpp>
 | |
| 
 | |
| // These scaled additions were borrowed from MTL unashamedly.
 | |
| // But Alexei Novakov had a lot of ideas to improve these. Thanks.
 | |
| 
 | |
| namespace boost { namespace numeric { namespace ublas {
 | |
| 
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     sparse_prod (const matrix_expression<E1> &e1,
 | |
|                  const matrix_expression<E2> &e2,
 | |
|                  M &m, TRI,
 | |
|                  row_major_tag) {
 | |
|         typedef M matrix_type;
 | |
|         typedef TRI triangular_restriction;
 | |
|         typedef const E1 expression1_type;
 | |
|         typedef const E2 expression2_type;
 | |
|         typedef typename M::size_type size_type;
 | |
|         typedef typename M::value_type value_type;
 | |
| 
 | |
|         // ISSUE why is there a dense vector here?
 | |
|         vector<value_type> temporary (e2 ().size2 ());
 | |
|         temporary.clear ();
 | |
|         typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
 | |
|         typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
 | |
|         while (it1 != it1_end) {
 | |
|             size_type jb (temporary.size ());
 | |
|             size_type je (0);
 | |
| #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
 | |
|             typename expression1_type::const_iterator2 it2 (it1.begin ());
 | |
|             typename expression1_type::const_iterator2 it2_end (it1.end ());
 | |
| #else
 | |
|             typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
 | |
|             typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
 | |
| #endif
 | |
|             while (it2 != it2_end) {
 | |
|                 // temporary.plus_assign (*it2 * row (e2 (), it2.index2 ()));
 | |
|                 matrix_row<expression2_type> mr (e2 (), it2.index2 ());
 | |
|                 typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
 | |
|                 typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
 | |
|                 while (itr != itr_end) {
 | |
|                     size_type j (itr.index ());
 | |
|                     temporary (j) += *it2 * *itr;
 | |
|                     jb = (std::min) (jb, j);
 | |
|                     je = (std::max) (je, j);
 | |
|                     ++ itr;
 | |
|                 }
 | |
|                 ++ it2;
 | |
|             }
 | |
|             for (size_type j = jb; j < je + 1; ++ j) {
 | |
|                 if (temporary (j) != value_type/*zero*/()) {
 | |
|                     // FIXME we'll need to extend the container interface!
 | |
|                     // m.push_back (it1.index1 (), j, temporary (j));
 | |
|                     // FIXME What to do with adaptors?
 | |
|                     // m.insert (it1.index1 (), j, temporary (j));
 | |
|                     if (triangular_restriction::other (it1.index1 (), j))
 | |
|                         m (it1.index1 (), j) = temporary (j);
 | |
|                     temporary (j) = value_type/*zero*/();
 | |
|                 }
 | |
|             }
 | |
|             ++ it1;
 | |
|         }
 | |
|         return m;
 | |
|     }
 | |
| 
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     sparse_prod (const matrix_expression<E1> &e1,
 | |
|                  const matrix_expression<E2> &e2,
 | |
|                  M &m, TRI,
 | |
|                  column_major_tag) {
 | |
|         typedef M matrix_type;
 | |
|         typedef TRI triangular_restriction;
 | |
|         typedef const E1 expression1_type;
 | |
|         typedef const E2 expression2_type;
 | |
|         typedef typename M::size_type size_type;
 | |
|         typedef typename M::value_type value_type;
 | |
| 
 | |
|         // ISSUE why is there a dense vector here?
 | |
|         vector<value_type> temporary (e1 ().size1 ());
 | |
|         temporary.clear ();
 | |
|         typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
 | |
|         typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
 | |
|         while (it2 != it2_end) {
 | |
|             size_type ib (temporary.size ());
 | |
|             size_type ie (0);
 | |
| #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
 | |
|             typename expression2_type::const_iterator1 it1 (it2.begin ());
 | |
|             typename expression2_type::const_iterator1 it1_end (it2.end ());
 | |
| #else
 | |
|             typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
 | |
|             typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
 | |
| #endif
 | |
|             while (it1 != it1_end) {
 | |
|                 // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
 | |
|                 matrix_column<expression1_type> mc (e1 (), it1.index1 ());
 | |
|                 typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
 | |
|                 typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
 | |
|                 while (itc != itc_end) {
 | |
|                     size_type i (itc.index ());
 | |
|                     temporary (i) += *it1 * *itc;
 | |
|                     ib = (std::min) (ib, i);
 | |
|                     ie = (std::max) (ie, i);
 | |
|                     ++ itc;
 | |
|                 }
 | |
|                 ++ it1;
 | |
|             }
 | |
|             for (size_type i = ib; i < ie + 1; ++ i) {
 | |
|                 if (temporary (i) != value_type/*zero*/()) {
 | |
|                     // FIXME we'll need to extend the container interface!
 | |
|                     // m.push_back (i, it2.index2 (), temporary (i));
 | |
|                     // FIXME What to do with adaptors?
 | |
|                     // m.insert (i, it2.index2 (), temporary (i));
 | |
|                     if (triangular_restriction::other (i, it2.index2 ()))
 | |
|                         m (i, it2.index2 ()) = temporary (i);
 | |
|                     temporary (i) = value_type/*zero*/();
 | |
|                 }
 | |
|             }
 | |
|             ++ it2;
 | |
|         }
 | |
|         return m;
 | |
|     }
 | |
| 
 | |
|     // Dispatcher
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     sparse_prod (const matrix_expression<E1> &e1,
 | |
|                  const matrix_expression<E2> &e2,
 | |
|                  M &m, TRI, bool init = true) {
 | |
|         typedef typename M::value_type value_type;
 | |
|         typedef TRI triangular_restriction;
 | |
|         typedef typename M::orientation_category orientation_category;
 | |
| 
 | |
|         if (init)
 | |
|             m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
 | |
|         return sparse_prod (e1, e2, m, triangular_restriction (), orientation_category ());
 | |
|     }
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M
 | |
|     sparse_prod (const matrix_expression<E1> &e1,
 | |
|                  const matrix_expression<E2> &e2,
 | |
|                  TRI) {
 | |
|         typedef M matrix_type;
 | |
|         typedef TRI triangular_restriction;
 | |
| 
 | |
|         matrix_type m (e1 ().size1 (), e2 ().size2 ());
 | |
|         // FIXME needed for c_matrix?!
 | |
|         // return sparse_prod (e1, e2, m, triangular_restriction (), false);
 | |
|         return sparse_prod (e1, e2, m, triangular_restriction (), true);
 | |
|     }
 | |
|     template<class M, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     sparse_prod (const matrix_expression<E1> &e1,
 | |
|                  const matrix_expression<E2> &e2,
 | |
|                  M &m, bool init = true) {
 | |
|         typedef typename M::value_type value_type;
 | |
|         typedef typename M::orientation_category orientation_category;
 | |
| 
 | |
|         if (init)
 | |
|             m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
 | |
|         return sparse_prod (e1, e2, m, full (), orientation_category ());
 | |
|     }
 | |
|     template<class M, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M
 | |
|     sparse_prod (const matrix_expression<E1> &e1,
 | |
|                  const matrix_expression<E2> &e2) {
 | |
|         typedef M matrix_type;
 | |
| 
 | |
|         matrix_type m (e1 ().size1 (), e2 ().size2 ());
 | |
|         // FIXME needed for c_matrix?!
 | |
|         // return sparse_prod (e1, e2, m, full (), false);
 | |
|         return sparse_prod (e1, e2, m, full (), true);
 | |
|     }
 | |
| 
 | |
| }}}
 | |
| 
 | |
| #endif
 | 
