202 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			202 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright (c) 2006 Xiaogang Zhang
 | |
| //  Copyright (c) 2006 John Maddock
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| //  History:
 | |
| //  XZ wrote the original of this file as part of the Google
 | |
| //  Summer of Code 2006.  JM modified it to fit into the
 | |
| //  Boost.Math conceptual framework better, and to ensure
 | |
| //  that the code continues to work no matter how many digits
 | |
| //  type T has.
 | |
| 
 | |
| #ifndef BOOST_MATH_ELLINT_1_HPP
 | |
| #define BOOST_MATH_ELLINT_1_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #include <boost/math/special_functions/ellint_rf.hpp>
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| #include <boost/math/policies/error_handling.hpp>
 | |
| #include <boost/math/tools/workaround.hpp>
 | |
| #include <boost/math/special_functions/round.hpp>
 | |
| 
 | |
| // Elliptic integrals (complete and incomplete) of the first kind
 | |
| // Carlson, Numerische Mathematik, vol 33, 1 (1979)
 | |
| 
 | |
| namespace boost { namespace math {
 | |
| 
 | |
| template <class T1, class T2, class Policy>
 | |
| typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol);
 | |
| 
 | |
| namespace detail{
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| T ellint_k_imp(T k, const Policy& pol);
 | |
| 
 | |
| // Elliptic integral (Legendre form) of the first kind
 | |
| template <typename T, typename Policy>
 | |
| T ellint_f_imp(T phi, T k, const Policy& pol)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     using namespace boost::math::tools;
 | |
|     using namespace boost::math::constants;
 | |
| 
 | |
|     static const char* function = "boost::math::ellint_f<%1%>(%1%,%1%)";
 | |
|     BOOST_MATH_INSTRUMENT_VARIABLE(phi);
 | |
|     BOOST_MATH_INSTRUMENT_VARIABLE(k);
 | |
|     BOOST_MATH_INSTRUMENT_VARIABLE(function);
 | |
| 
 | |
|     if (abs(k) > 1)
 | |
|     {
 | |
|        return policies::raise_domain_error<T>(function,
 | |
|             "Got k = %1%, function requires |k| <= 1", k, pol);
 | |
|     }
 | |
| 
 | |
|     bool invert = false;
 | |
|     if(phi < 0)
 | |
|     {
 | |
|        BOOST_MATH_INSTRUMENT_VARIABLE(phi);
 | |
|        phi = fabs(phi);
 | |
|        invert = true;
 | |
|     }
 | |
| 
 | |
|     T result;
 | |
| 
 | |
|     if(phi >= tools::max_value<T>())
 | |
|     {
 | |
|        // Need to handle infinity as a special case:
 | |
|        result = policies::raise_overflow_error<T>(function, 0, pol);
 | |
|        BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | |
|     }
 | |
|     else if(phi > 1 / tools::epsilon<T>())
 | |
|     {
 | |
|        // Phi is so large that phi%pi is necessarily zero (or garbage),
 | |
|        // just return the second part of the duplication formula:
 | |
|        result = 2 * phi * ellint_k_imp(k, pol) / constants::pi<T>();
 | |
|        BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|        // Carlson's algorithm works only for |phi| <= pi/2,
 | |
|        // use the integrand's periodicity to normalize phi
 | |
|        //
 | |
|        // Xiaogang's original code used a cast to long long here
 | |
|        // but that fails if T has more digits than a long long,
 | |
|        // so rewritten to use fmod instead:
 | |
|        //
 | |
|        BOOST_MATH_INSTRUMENT_CODE("pi/2 = " << constants::pi<T>() / 2);
 | |
|        T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
 | |
|        BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
 | |
|        T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
 | |
|        BOOST_MATH_INSTRUMENT_VARIABLE(m);
 | |
|        int s = 1;
 | |
|        if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5)
 | |
|        {
 | |
|           m += 1;
 | |
|           s = -1;
 | |
|           rphi = constants::half_pi<T>() - rphi;
 | |
|           BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
 | |
|        }
 | |
|        T sinp = sin(rphi);
 | |
|        sinp *= sinp;
 | |
|        T cosp = cos(rphi);
 | |
|        cosp *= cosp;
 | |
|        BOOST_MATH_INSTRUMENT_VARIABLE(sinp);
 | |
|        BOOST_MATH_INSTRUMENT_VARIABLE(cosp);
 | |
|        if(sinp > tools::min_value<T>())
 | |
|        {
 | |
|           //
 | |
|           // Use http://dlmf.nist.gov/19.25#E5, note that
 | |
|           // c-1 simplifies to cot^2(rphi) which avoid cancellation:
 | |
|           //
 | |
|           T c = 1 / sinp;
 | |
|           result = rphi == 0 ? static_cast<T>(0) : static_cast<T>(s * ellint_rf_imp(T(cosp / sinp), T(c - k * k), c, pol));
 | |
|        }
 | |
|        else
 | |
|           result = s * sin(rphi);
 | |
|        BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | |
|        if(m != 0)
 | |
|        {
 | |
|           result += m * ellint_k_imp(k, pol);
 | |
|           BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | |
|        }
 | |
|     }
 | |
|     return invert ? T(-result) : result;
 | |
| }
 | |
| 
 | |
| // Complete elliptic integral (Legendre form) of the first kind
 | |
| template <typename T, typename Policy>
 | |
| T ellint_k_imp(T k, const Policy& pol)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     using namespace boost::math::tools;
 | |
| 
 | |
|     static const char* function = "boost::math::ellint_k<%1%>(%1%)";
 | |
| 
 | |
|     if (abs(k) > 1)
 | |
|     {
 | |
|        return policies::raise_domain_error<T>(function,
 | |
|             "Got k = %1%, function requires |k| <= 1", k, pol);
 | |
|     }
 | |
|     if (abs(k) == 1)
 | |
|     {
 | |
|        return policies::raise_overflow_error<T>(function, 0, pol);
 | |
|     }
 | |
| 
 | |
|     T x = 0;
 | |
|     T y = 1 - k * k;
 | |
|     T z = 1;
 | |
|     T value = ellint_rf_imp(x, y, z, pol);
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| inline typename tools::promote_args<T>::type ellint_1(T k, const Policy& pol, const mpl::true_&)
 | |
| {
 | |
|    typedef typename tools::promote_args<T>::type result_type;
 | |
|    typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | |
|    return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_k_imp(static_cast<value_type>(k), pol), "boost::math::ellint_1<%1%>(%1%)");
 | |
| }
 | |
| 
 | |
| template <class T1, class T2>
 | |
| inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const mpl::false_&)
 | |
| {
 | |
|    return boost::math::ellint_1(k, phi, policies::policy<>());
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| // Complete elliptic integral (Legendre form) of the first kind
 | |
| template <typename T>
 | |
| inline typename tools::promote_args<T>::type ellint_1(T k)
 | |
| {
 | |
|    return ellint_1(k, policies::policy<>());
 | |
| }
 | |
| 
 | |
| // Elliptic integral (Legendre form) of the first kind
 | |
| template <class T1, class T2, class Policy>
 | |
| inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol)
 | |
| {
 | |
|    typedef typename tools::promote_args<T1, T2>::type result_type;
 | |
|    typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | |
|    return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_f_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_1<%1%>(%1%,%1%)");
 | |
| }
 | |
| 
 | |
| template <class T1, class T2>
 | |
| inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi)
 | |
| {
 | |
|    typedef typename policies::is_policy<T2>::type tag_type;
 | |
|    return detail::ellint_1(k, phi, tag_type());
 | |
| }
 | |
| 
 | |
| }} // namespaces
 | |
| 
 | |
| #endif // BOOST_MATH_ELLINT_1_HPP
 | |
| 
 | 
