js8call/.svn/pristine/64/6463a66b7dac7c70ee730b0d3922f0fa445cfd61.svn-base
2018-02-08 21:28:33 -05:00

462 lines
15 KiB
Plaintext

//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_RADIX_SORT_HPP
#define BOOST_COMPUTE_ALGORITHM_DETAIL_RADIX_SORT_HPP
#include <iterator>
#include <boost/assert.hpp>
#include <boost/type_traits/is_signed.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/compute/kernel.hpp>
#include <boost/compute/program.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/algorithm/exclusive_scan.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/detail/parameter_cache.hpp>
#include <boost/compute/type_traits/type_name.hpp>
#include <boost/compute/type_traits/is_fundamental.hpp>
#include <boost/compute/type_traits/is_vector_type.hpp>
#include <boost/compute/utility/program_cache.hpp>
namespace boost {
namespace compute {
namespace detail {
// meta-function returning true if type T is radix-sortable
template<class T>
struct is_radix_sortable :
boost::mpl::and_<
typename ::boost::compute::is_fundamental<T>::type,
typename boost::mpl::not_<typename is_vector_type<T>::type>::type
>
{
};
template<size_t N>
struct radix_sort_value_type
{
};
template<>
struct radix_sort_value_type<1>
{
typedef uchar_ type;
};
template<>
struct radix_sort_value_type<2>
{
typedef ushort_ type;
};
template<>
struct radix_sort_value_type<4>
{
typedef uint_ type;
};
template<>
struct radix_sort_value_type<8>
{
typedef ulong_ type;
};
template<typename T>
inline const char* enable_double()
{
return " -DT2_double=0";
}
template<>
inline const char* enable_double<double>()
{
return " -DT2_double=1";
}
const char radix_sort_source[] =
"#if T2_double\n"
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"#endif\n"
"#define K2_BITS (1 << K_BITS)\n"
"#define RADIX_MASK ((((T)(1)) << K_BITS) - 1)\n"
"#define SIGN_BIT ((sizeof(T) * CHAR_BIT) - 1)\n"
"#if defined(ASC)\n" // asc order
"inline uint radix(const T x, const uint low_bit)\n"
"{\n"
"#if defined(IS_FLOATING_POINT)\n"
" const T mask = -(x >> SIGN_BIT) | (((T)(1)) << SIGN_BIT);\n"
" return ((x ^ mask) >> low_bit) & RADIX_MASK;\n"
"#elif defined(IS_SIGNED)\n"
" return ((x ^ (((T)(1)) << SIGN_BIT)) >> low_bit) & RADIX_MASK;\n"
"#else\n"
" return (x >> low_bit) & RADIX_MASK;\n"
"#endif\n"
"}\n"
"#else\n" // desc order
// For signed types we just negate the x and for unsigned types we
// subtract the x from max value of its type ((T)(-1) is a max value
// of type T when T is an unsigned type).
"inline uint radix(const T x, const uint low_bit)\n"
"{\n"
"#if defined(IS_FLOATING_POINT)\n"
" const T mask = -(x >> SIGN_BIT) | (((T)(1)) << SIGN_BIT);\n"
" return (((-x) ^ mask) >> low_bit) & RADIX_MASK;\n"
"#elif defined(IS_SIGNED)\n"
" return (((-x) ^ (((T)(1)) << SIGN_BIT)) >> low_bit) & RADIX_MASK;\n"
"#else\n"
" return (((T)(-1) - x) >> low_bit) & RADIX_MASK;\n"
"#endif\n"
"}\n"
"#endif\n" // #if defined(ASC)
"__kernel void count(__global const T *input,\n"
" const uint input_offset,\n"
" const uint input_size,\n"
" __global uint *global_counts,\n"
" __global uint *global_offsets,\n"
" __local uint *local_counts,\n"
" const uint low_bit)\n"
"{\n"
// work-item parameters
" const uint gid = get_global_id(0);\n"
" const uint lid = get_local_id(0);\n"
// zero local counts
" if(lid < K2_BITS){\n"
" local_counts[lid] = 0;\n"
" }\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n"
// reduce local counts
" if(gid < input_size){\n"
" T value = input[input_offset+gid];\n"
" uint bucket = radix(value, low_bit);\n"
" atomic_inc(local_counts + bucket);\n"
" }\n"
" barrier(CLK_LOCAL_MEM_FENCE);\n"
// write block-relative offsets
" if(lid < K2_BITS){\n"
" global_counts[K2_BITS*get_group_id(0) + lid] = local_counts[lid];\n"
// write global offsets
" if(get_group_id(0) == (get_num_groups(0) - 1)){\n"
" global_offsets[lid] = local_counts[lid];\n"
" }\n"
" }\n"
"}\n"
"__kernel void scan(__global const uint *block_offsets,\n"
" __global uint *global_offsets,\n"
" const uint block_count)\n"
"{\n"
" __global const uint *last_block_offsets =\n"
" block_offsets + K2_BITS * (block_count - 1);\n"
// calculate and scan global_offsets
" uint sum = 0;\n"
" for(uint i = 0; i < K2_BITS; i++){\n"
" uint x = global_offsets[i] + last_block_offsets[i];\n"
" global_offsets[i] = sum;\n"
" sum += x;\n"
" }\n"
"}\n"
"__kernel void scatter(__global const T *input,\n"
" const uint input_offset,\n"
" const uint input_size,\n"
" const uint low_bit,\n"
" __global const uint *counts,\n"
" __global const uint *global_offsets,\n"
"#ifndef SORT_BY_KEY\n"
" __global T *output,\n"
" const uint output_offset)\n"
"#else\n"
" __global T *keys_output,\n"
" const uint keys_output_offset,\n"
" __global T2 *values_input,\n"
" const uint values_input_offset,\n"
" __global T2 *values_output,\n"
" const uint values_output_offset)\n"
"#endif\n"
"{\n"
// work-item parameters
" const uint gid = get_global_id(0);\n"
" const uint lid = get_local_id(0);\n"
// copy input to local memory
" T value;\n"
" uint bucket;\n"
" __local uint local_input[BLOCK_SIZE];\n"
" if(gid < input_size){\n"
" value = input[input_offset+gid];\n"
" bucket = radix(value, low_bit);\n"
" local_input[lid] = bucket;\n"
" }\n"
// copy block counts to local memory
" __local uint local_counts[(1 << K_BITS)];\n"
" if(lid < K2_BITS){\n"
" local_counts[lid] = counts[get_group_id(0) * K2_BITS + lid];\n"
" }\n"
// wait until local memory is ready
" barrier(CLK_LOCAL_MEM_FENCE);\n"
" if(gid >= input_size){\n"
" return;\n"
" }\n"
// get global offset
" uint offset = global_offsets[bucket] + local_counts[bucket];\n"
// calculate local offset
" uint local_offset = 0;\n"
" for(uint i = 0; i < lid; i++){\n"
" if(local_input[i] == bucket)\n"
" local_offset++;\n"
" }\n"
"#ifndef SORT_BY_KEY\n"
// write value to output
" output[output_offset + offset + local_offset] = value;\n"
"#else\n"
// write key and value if doing sort_by_key
" keys_output[keys_output_offset+offset + local_offset] = value;\n"
" values_output[values_output_offset+offset + local_offset] =\n"
" values_input[values_input_offset+gid];\n"
"#endif\n"
"}\n";
template<class T, class T2>
inline void radix_sort_impl(const buffer_iterator<T> first,
const buffer_iterator<T> last,
const buffer_iterator<T2> values_first,
const bool ascending,
command_queue &queue)
{
typedef T value_type;
typedef typename radix_sort_value_type<sizeof(T)>::type sort_type;
const device &device = queue.get_device();
const context &context = queue.get_context();
// if we have a valid values iterator then we are doing a
// sort by key and have to set up the values buffer
bool sort_by_key = (values_first.get_buffer().get() != 0);
// load (or create) radix sort program
std::string cache_key =
std::string("__boost_radix_sort_") + type_name<value_type>();
if(sort_by_key){
cache_key += std::string("_with_") + type_name<T2>();
}
boost::shared_ptr<program_cache> cache =
program_cache::get_global_cache(context);
boost::shared_ptr<parameter_cache> parameters =
detail::parameter_cache::get_global_cache(device);
// sort parameters
const uint_ k = parameters->get(cache_key, "k", 4);
const uint_ k2 = 1 << k;
const uint_ block_size = parameters->get(cache_key, "tpb", 128);
// sort program compiler options
std::stringstream options;
options << "-DK_BITS=" << k;
options << " -DT=" << type_name<sort_type>();
options << " -DBLOCK_SIZE=" << block_size;
if(boost::is_floating_point<value_type>::value){
options << " -DIS_FLOATING_POINT";
}
if(boost::is_signed<value_type>::value){
options << " -DIS_SIGNED";
}
if(sort_by_key){
options << " -DSORT_BY_KEY";
options << " -DT2=" << type_name<T2>();
options << enable_double<T2>();
}
if(ascending){
options << " -DASC";
}
// load radix sort program
program radix_sort_program = cache->get_or_build(
cache_key, options.str(), radix_sort_source, context
);
kernel count_kernel(radix_sort_program, "count");
kernel scan_kernel(radix_sort_program, "scan");
kernel scatter_kernel(radix_sort_program, "scatter");
size_t count = detail::iterator_range_size(first, last);
uint_ block_count = static_cast<uint_>(count / block_size);
if(block_count * block_size != count){
block_count++;
}
// setup temporary buffers
vector<value_type> output(count, context);
vector<T2> values_output(sort_by_key ? count : 0, context);
vector<uint_> offsets(k2, context);
vector<uint_> counts(block_count * k2, context);
const buffer *input_buffer = &first.get_buffer();
uint_ input_offset = static_cast<uint_>(first.get_index());
const buffer *output_buffer = &output.get_buffer();
uint_ output_offset = 0;
const buffer *values_input_buffer = &values_first.get_buffer();
uint_ values_input_offset = static_cast<uint_>(values_first.get_index());
const buffer *values_output_buffer = &values_output.get_buffer();
uint_ values_output_offset = 0;
for(uint_ i = 0; i < sizeof(sort_type) * CHAR_BIT / k; i++){
// write counts
count_kernel.set_arg(0, *input_buffer);
count_kernel.set_arg(1, input_offset);
count_kernel.set_arg(2, static_cast<uint_>(count));
count_kernel.set_arg(3, counts);
count_kernel.set_arg(4, offsets);
count_kernel.set_arg(5, block_size * sizeof(uint_), 0);
count_kernel.set_arg(6, i * k);
queue.enqueue_1d_range_kernel(count_kernel,
0,
block_count * block_size,
block_size);
// scan counts
if(k == 1){
typedef uint2_ counter_type;
::boost::compute::exclusive_scan(
make_buffer_iterator<counter_type>(counts.get_buffer(), 0),
make_buffer_iterator<counter_type>(counts.get_buffer(), counts.size() / 2),
make_buffer_iterator<counter_type>(counts.get_buffer()),
queue
);
}
else if(k == 2){
typedef uint4_ counter_type;
::boost::compute::exclusive_scan(
make_buffer_iterator<counter_type>(counts.get_buffer(), 0),
make_buffer_iterator<counter_type>(counts.get_buffer(), counts.size() / 4),
make_buffer_iterator<counter_type>(counts.get_buffer()),
queue
);
}
else if(k == 4){
typedef uint16_ counter_type;
::boost::compute::exclusive_scan(
make_buffer_iterator<counter_type>(counts.get_buffer(), 0),
make_buffer_iterator<counter_type>(counts.get_buffer(), counts.size() / 16),
make_buffer_iterator<counter_type>(counts.get_buffer()),
queue
);
}
else {
BOOST_ASSERT(false && "unknown k");
break;
}
// scan global offsets
scan_kernel.set_arg(0, counts);
scan_kernel.set_arg(1, offsets);
scan_kernel.set_arg(2, block_count);
queue.enqueue_task(scan_kernel);
// scatter values
scatter_kernel.set_arg(0, *input_buffer);
scatter_kernel.set_arg(1, input_offset);
scatter_kernel.set_arg(2, static_cast<uint_>(count));
scatter_kernel.set_arg(3, i * k);
scatter_kernel.set_arg(4, counts);
scatter_kernel.set_arg(5, offsets);
scatter_kernel.set_arg(6, *output_buffer);
scatter_kernel.set_arg(7, output_offset);
if(sort_by_key){
scatter_kernel.set_arg(8, *values_input_buffer);
scatter_kernel.set_arg(9, values_input_offset);
scatter_kernel.set_arg(10, *values_output_buffer);
scatter_kernel.set_arg(11, values_output_offset);
}
queue.enqueue_1d_range_kernel(scatter_kernel,
0,
block_count * block_size,
block_size);
// swap buffers
std::swap(input_buffer, output_buffer);
std::swap(values_input_buffer, values_output_buffer);
std::swap(input_offset, output_offset);
std::swap(values_input_offset, values_output_offset);
}
}
template<class Iterator>
inline void radix_sort(Iterator first,
Iterator last,
command_queue &queue)
{
radix_sort_impl(first, last, buffer_iterator<int>(), true, queue);
}
template<class KeyIterator, class ValueIterator>
inline void radix_sort_by_key(KeyIterator keys_first,
KeyIterator keys_last,
ValueIterator values_first,
command_queue &queue)
{
radix_sort_impl(keys_first, keys_last, values_first, true, queue);
}
template<class Iterator>
inline void radix_sort(Iterator first,
Iterator last,
const bool ascending,
command_queue &queue)
{
radix_sort_impl(first, last, buffer_iterator<int>(), ascending, queue);
}
template<class KeyIterator, class ValueIterator>
inline void radix_sort_by_key(KeyIterator keys_first,
KeyIterator keys_last,
ValueIterator values_first,
const bool ascending,
command_queue &queue)
{
radix_sort_impl(keys_first, keys_last, values_first, ascending, queue);
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_RADIX_SORT_HPP