js8call/.svn/pristine/a5/a50c81a981458113a48fc6eabe3fd12a817330cf.svn-base
2018-02-08 21:28:33 -05:00

334 lines
14 KiB
Plaintext

// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_RATIONAL_HPP
#define BOOST_MATH_TOOLS_RATIONAL_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/array.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/mpl/int.hpp>
#if BOOST_MATH_POLY_METHOD == 1
# define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner1_, BOOST_MATH_MAX_POLY_ORDER).hpp>
# include BOOST_HEADER()
# undef BOOST_HEADER
#elif BOOST_MATH_POLY_METHOD == 2
# define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner2_, BOOST_MATH_MAX_POLY_ORDER).hpp>
# include BOOST_HEADER()
# undef BOOST_HEADER
#elif BOOST_MATH_POLY_METHOD == 3
# define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/polynomial_horner3_, BOOST_MATH_MAX_POLY_ORDER).hpp>
# include BOOST_HEADER()
# undef BOOST_HEADER
#endif
#if BOOST_MATH_RATIONAL_METHOD == 1
# define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner1_, BOOST_MATH_MAX_POLY_ORDER).hpp>
# include BOOST_HEADER()
# undef BOOST_HEADER
#elif BOOST_MATH_RATIONAL_METHOD == 2
# define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner2_, BOOST_MATH_MAX_POLY_ORDER).hpp>
# include BOOST_HEADER()
# undef BOOST_HEADER
#elif BOOST_MATH_RATIONAL_METHOD == 3
# define BOOST_HEADER() <BOOST_JOIN(boost/math/tools/detail/rational_horner3_, BOOST_MATH_MAX_POLY_ORDER).hpp>
# include BOOST_HEADER()
# undef BOOST_HEADER
#endif
#if 0
//
// This just allows dependency trackers to find the headers
// used in the above PP-magic.
//
#include <boost/math/tools/detail/polynomial_horner1_2.hpp>
#include <boost/math/tools/detail/polynomial_horner1_3.hpp>
#include <boost/math/tools/detail/polynomial_horner1_4.hpp>
#include <boost/math/tools/detail/polynomial_horner1_5.hpp>
#include <boost/math/tools/detail/polynomial_horner1_6.hpp>
#include <boost/math/tools/detail/polynomial_horner1_7.hpp>
#include <boost/math/tools/detail/polynomial_horner1_8.hpp>
#include <boost/math/tools/detail/polynomial_horner1_9.hpp>
#include <boost/math/tools/detail/polynomial_horner1_10.hpp>
#include <boost/math/tools/detail/polynomial_horner1_11.hpp>
#include <boost/math/tools/detail/polynomial_horner1_12.hpp>
#include <boost/math/tools/detail/polynomial_horner1_13.hpp>
#include <boost/math/tools/detail/polynomial_horner1_14.hpp>
#include <boost/math/tools/detail/polynomial_horner1_15.hpp>
#include <boost/math/tools/detail/polynomial_horner1_16.hpp>
#include <boost/math/tools/detail/polynomial_horner1_17.hpp>
#include <boost/math/tools/detail/polynomial_horner1_18.hpp>
#include <boost/math/tools/detail/polynomial_horner1_19.hpp>
#include <boost/math/tools/detail/polynomial_horner1_20.hpp>
#include <boost/math/tools/detail/polynomial_horner2_2.hpp>
#include <boost/math/tools/detail/polynomial_horner2_3.hpp>
#include <boost/math/tools/detail/polynomial_horner2_4.hpp>
#include <boost/math/tools/detail/polynomial_horner2_5.hpp>
#include <boost/math/tools/detail/polynomial_horner2_6.hpp>
#include <boost/math/tools/detail/polynomial_horner2_7.hpp>
#include <boost/math/tools/detail/polynomial_horner2_8.hpp>
#include <boost/math/tools/detail/polynomial_horner2_9.hpp>
#include <boost/math/tools/detail/polynomial_horner2_10.hpp>
#include <boost/math/tools/detail/polynomial_horner2_11.hpp>
#include <boost/math/tools/detail/polynomial_horner2_12.hpp>
#include <boost/math/tools/detail/polynomial_horner2_13.hpp>
#include <boost/math/tools/detail/polynomial_horner2_14.hpp>
#include <boost/math/tools/detail/polynomial_horner2_15.hpp>
#include <boost/math/tools/detail/polynomial_horner2_16.hpp>
#include <boost/math/tools/detail/polynomial_horner2_17.hpp>
#include <boost/math/tools/detail/polynomial_horner2_18.hpp>
#include <boost/math/tools/detail/polynomial_horner2_19.hpp>
#include <boost/math/tools/detail/polynomial_horner2_20.hpp>
#include <boost/math/tools/detail/polynomial_horner3_2.hpp>
#include <boost/math/tools/detail/polynomial_horner3_3.hpp>
#include <boost/math/tools/detail/polynomial_horner3_4.hpp>
#include <boost/math/tools/detail/polynomial_horner3_5.hpp>
#include <boost/math/tools/detail/polynomial_horner3_6.hpp>
#include <boost/math/tools/detail/polynomial_horner3_7.hpp>
#include <boost/math/tools/detail/polynomial_horner3_8.hpp>
#include <boost/math/tools/detail/polynomial_horner3_9.hpp>
#include <boost/math/tools/detail/polynomial_horner3_10.hpp>
#include <boost/math/tools/detail/polynomial_horner3_11.hpp>
#include <boost/math/tools/detail/polynomial_horner3_12.hpp>
#include <boost/math/tools/detail/polynomial_horner3_13.hpp>
#include <boost/math/tools/detail/polynomial_horner3_14.hpp>
#include <boost/math/tools/detail/polynomial_horner3_15.hpp>
#include <boost/math/tools/detail/polynomial_horner3_16.hpp>
#include <boost/math/tools/detail/polynomial_horner3_17.hpp>
#include <boost/math/tools/detail/polynomial_horner3_18.hpp>
#include <boost/math/tools/detail/polynomial_horner3_19.hpp>
#include <boost/math/tools/detail/polynomial_horner3_20.hpp>
#include <boost/math/tools/detail/rational_horner1_2.hpp>
#include <boost/math/tools/detail/rational_horner1_3.hpp>
#include <boost/math/tools/detail/rational_horner1_4.hpp>
#include <boost/math/tools/detail/rational_horner1_5.hpp>
#include <boost/math/tools/detail/rational_horner1_6.hpp>
#include <boost/math/tools/detail/rational_horner1_7.hpp>
#include <boost/math/tools/detail/rational_horner1_8.hpp>
#include <boost/math/tools/detail/rational_horner1_9.hpp>
#include <boost/math/tools/detail/rational_horner1_10.hpp>
#include <boost/math/tools/detail/rational_horner1_11.hpp>
#include <boost/math/tools/detail/rational_horner1_12.hpp>
#include <boost/math/tools/detail/rational_horner1_13.hpp>
#include <boost/math/tools/detail/rational_horner1_14.hpp>
#include <boost/math/tools/detail/rational_horner1_15.hpp>
#include <boost/math/tools/detail/rational_horner1_16.hpp>
#include <boost/math/tools/detail/rational_horner1_17.hpp>
#include <boost/math/tools/detail/rational_horner1_18.hpp>
#include <boost/math/tools/detail/rational_horner1_19.hpp>
#include <boost/math/tools/detail/rational_horner1_20.hpp>
#include <boost/math/tools/detail/rational_horner2_2.hpp>
#include <boost/math/tools/detail/rational_horner2_3.hpp>
#include <boost/math/tools/detail/rational_horner2_4.hpp>
#include <boost/math/tools/detail/rational_horner2_5.hpp>
#include <boost/math/tools/detail/rational_horner2_6.hpp>
#include <boost/math/tools/detail/rational_horner2_7.hpp>
#include <boost/math/tools/detail/rational_horner2_8.hpp>
#include <boost/math/tools/detail/rational_horner2_9.hpp>
#include <boost/math/tools/detail/rational_horner2_10.hpp>
#include <boost/math/tools/detail/rational_horner2_11.hpp>
#include <boost/math/tools/detail/rational_horner2_12.hpp>
#include <boost/math/tools/detail/rational_horner2_13.hpp>
#include <boost/math/tools/detail/rational_horner2_14.hpp>
#include <boost/math/tools/detail/rational_horner2_15.hpp>
#include <boost/math/tools/detail/rational_horner2_16.hpp>
#include <boost/math/tools/detail/rational_horner2_17.hpp>
#include <boost/math/tools/detail/rational_horner2_18.hpp>
#include <boost/math/tools/detail/rational_horner2_19.hpp>
#include <boost/math/tools/detail/rational_horner2_20.hpp>
#include <boost/math/tools/detail/rational_horner3_2.hpp>
#include <boost/math/tools/detail/rational_horner3_3.hpp>
#include <boost/math/tools/detail/rational_horner3_4.hpp>
#include <boost/math/tools/detail/rational_horner3_5.hpp>
#include <boost/math/tools/detail/rational_horner3_6.hpp>
#include <boost/math/tools/detail/rational_horner3_7.hpp>
#include <boost/math/tools/detail/rational_horner3_8.hpp>
#include <boost/math/tools/detail/rational_horner3_9.hpp>
#include <boost/math/tools/detail/rational_horner3_10.hpp>
#include <boost/math/tools/detail/rational_horner3_11.hpp>
#include <boost/math/tools/detail/rational_horner3_12.hpp>
#include <boost/math/tools/detail/rational_horner3_13.hpp>
#include <boost/math/tools/detail/rational_horner3_14.hpp>
#include <boost/math/tools/detail/rational_horner3_15.hpp>
#include <boost/math/tools/detail/rational_horner3_16.hpp>
#include <boost/math/tools/detail/rational_horner3_17.hpp>
#include <boost/math/tools/detail/rational_horner3_18.hpp>
#include <boost/math/tools/detail/rational_horner3_19.hpp>
#include <boost/math/tools/detail/rational_horner3_20.hpp>
#endif
namespace boost{ namespace math{ namespace tools{
//
// Forward declaration to keep two phase lookup happy:
//
template <class T, class U>
U evaluate_polynomial(const T* poly, U const& z, std::size_t count) BOOST_MATH_NOEXCEPT(U);
namespace detail{
template <class T, class V, class Tag>
inline V evaluate_polynomial_c_imp(const T* a, const V& val, const Tag*) BOOST_MATH_NOEXCEPT(V)
{
return evaluate_polynomial(a, val, Tag::value);
}
} // namespace detail
//
// Polynomial evaluation with runtime size.
// This requires a for-loop which may be more expensive than
// the loop expanded versions above:
//
template <class T, class U>
inline U evaluate_polynomial(const T* poly, U const& z, std::size_t count) BOOST_MATH_NOEXCEPT(U)
{
BOOST_ASSERT(count > 0);
U sum = static_cast<U>(poly[count - 1]);
for(int i = static_cast<int>(count) - 2; i >= 0; --i)
{
sum *= z;
sum += static_cast<U>(poly[i]);
}
return sum;
}
//
// Compile time sized polynomials, just inline forwarders to the
// implementations above:
//
template <std::size_t N, class T, class V>
inline V evaluate_polynomial(const T(&a)[N], const V& val) BOOST_MATH_NOEXCEPT(V)
{
typedef mpl::int_<N> tag_type;
return detail::evaluate_polynomial_c_imp(static_cast<const T*>(a), val, static_cast<tag_type const*>(0));
}
template <std::size_t N, class T, class V>
inline V evaluate_polynomial(const boost::array<T,N>& a, const V& val) BOOST_MATH_NOEXCEPT(V)
{
typedef mpl::int_<N> tag_type;
return detail::evaluate_polynomial_c_imp(static_cast<const T*>(a.data()), val, static_cast<tag_type const*>(0));
}
//
// Even polynomials are trivial: just square the argument!
//
template <class T, class U>
inline U evaluate_even_polynomial(const T* poly, U z, std::size_t count) BOOST_MATH_NOEXCEPT(U)
{
return evaluate_polynomial(poly, U(z*z), count);
}
template <std::size_t N, class T, class V>
inline V evaluate_even_polynomial(const T(&a)[N], const V& z) BOOST_MATH_NOEXCEPT(V)
{
return evaluate_polynomial(a, V(z*z));
}
template <std::size_t N, class T, class V>
inline V evaluate_even_polynomial(const boost::array<T,N>& a, const V& z) BOOST_MATH_NOEXCEPT(V)
{
return evaluate_polynomial(a, V(z*z));
}
//
// Odd polynomials come next:
//
template <class T, class U>
inline U evaluate_odd_polynomial(const T* poly, U z, std::size_t count) BOOST_MATH_NOEXCEPT(U)
{
return poly[0] + z * evaluate_polynomial(poly+1, U(z*z), count-1);
}
template <std::size_t N, class T, class V>
inline V evaluate_odd_polynomial(const T(&a)[N], const V& z) BOOST_MATH_NOEXCEPT(V)
{
typedef mpl::int_<N-1> tag_type;
return a[0] + z * detail::evaluate_polynomial_c_imp(static_cast<const T*>(a) + 1, V(z*z), static_cast<tag_type const*>(0));
}
template <std::size_t N, class T, class V>
inline V evaluate_odd_polynomial(const boost::array<T,N>& a, const V& z) BOOST_MATH_NOEXCEPT(V)
{
typedef mpl::int_<N-1> tag_type;
return a[0] + z * detail::evaluate_polynomial_c_imp(static_cast<const T*>(a.data()) + 1, V(z*z), static_cast<tag_type const*>(0));
}
template <class T, class U, class V>
V evaluate_rational(const T* num, const U* denom, const V& z_, std::size_t count) BOOST_MATH_NOEXCEPT(V);
namespace detail{
template <class T, class U, class V, class Tag>
inline V evaluate_rational_c_imp(const T* num, const U* denom, const V& z, const Tag*) BOOST_MATH_NOEXCEPT(V)
{
return boost::math::tools::evaluate_rational(num, denom, z, Tag::value);
}
}
//
// Rational functions: numerator and denominator must be
// equal in size. These always have a for-loop and so may be less
// efficient than evaluating a pair of polynomials. However, there
// are some tricks we can use to prevent overflow that might otherwise
// occur in polynomial evaluation, if z is large. This is important
// in our Lanczos code for example.
//
template <class T, class U, class V>
V evaluate_rational(const T* num, const U* denom, const V& z_, std::size_t count) BOOST_MATH_NOEXCEPT(V)
{
V z(z_);
V s1, s2;
if(z <= 1)
{
s1 = static_cast<V>(num[count-1]);
s2 = static_cast<V>(denom[count-1]);
for(int i = (int)count - 2; i >= 0; --i)
{
s1 *= z;
s2 *= z;
s1 += num[i];
s2 += denom[i];
}
}
else
{
z = 1 / z;
s1 = static_cast<V>(num[0]);
s2 = static_cast<V>(denom[0]);
for(unsigned i = 1; i < count; ++i)
{
s1 *= z;
s2 *= z;
s1 += num[i];
s2 += denom[i];
}
}
return s1 / s2;
}
template <std::size_t N, class T, class U, class V>
inline V evaluate_rational(const T(&a)[N], const U(&b)[N], const V& z) BOOST_MATH_NOEXCEPT(V)
{
return detail::evaluate_rational_c_imp(a, b, z, static_cast<const mpl::int_<N>*>(0));
}
template <std::size_t N, class T, class U, class V>
inline V evaluate_rational(const boost::array<T,N>& a, const boost::array<U,N>& b, const V& z) BOOST_MATH_NOEXCEPT(V)
{
return detail::evaluate_rational_c_imp(a.data(), b.data(), z, static_cast<mpl::int_<N>*>(0));
}
} // namespace tools
} // namespace math
} // namespace boost
#endif // BOOST_MATH_TOOLS_RATIONAL_HPP