js8call/.svn/pristine/b8/b8aa4034e1d37f3698573f851f6fb18a343723c2.svn-base
2018-02-08 21:28:33 -05:00

239 lines
7.6 KiB
Plaintext

//---------------------------------------------------------------------------//
// Copyright (c) 2014 Roshan <thisisroshansmail@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_RANDOM_LINEAR_CONGRUENTIAL_ENGINE_HPP
#define BOOST_COMPUTE_RANDOM_LINEAR_CONGRUENTIAL_ENGINE_HPP
#include <algorithm>
#include <boost/compute/types.hpp>
#include <boost/compute/buffer.hpp>
#include <boost/compute/kernel.hpp>
#include <boost/compute/context.hpp>
#include <boost/compute/program.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/iterator/discard_iterator.hpp>
#include <boost/compute/utility/program_cache.hpp>
namespace boost {
namespace compute {
///
/// \class linear_congruential_engine
/// \brief 'Quick and Dirty' linear congruential engine
///
/// Quick and dirty linear congruential engine to generate low quality
/// random numbers very quickly. For uses in which good quality of random
/// numbers is required(Monte-Carlo Simulations), use other engines like
/// Mersenne Twister instead.
///
template<class T = uint_>
class linear_congruential_engine
{
public:
typedef T result_type;
static const T default_seed = 1;
static const T a = 1099087573;
static const size_t threads = 1024;
/// Creates a new linear_congruential_engine and seeds it with \p value.
explicit linear_congruential_engine(command_queue &queue,
result_type value = default_seed)
: m_context(queue.get_context()),
m_multiplicands(m_context, threads * sizeof(result_type))
{
// setup program
load_program();
// seed state
seed(value, queue);
// generate multiplicands
generate_multiplicands(queue);
}
/// Creates a new linear_congruential_engine object as a copy of \p other.
linear_congruential_engine(const linear_congruential_engine<T> &other)
: m_context(other.m_context),
m_program(other.m_program),
m_seed(other.m_seed),
m_multiplicands(other.m_multiplicands)
{
}
/// Copies \p other to \c *this.
linear_congruential_engine<T>&
operator=(const linear_congruential_engine<T> &other)
{
if(this != &other){
m_context = other.m_context;
m_program = other.m_program;
m_seed = other.m_seed;
m_multiplicands = other.m_multiplicands;
}
return *this;
}
/// Destroys the linear_congruential_engine object.
~linear_congruential_engine()
{
}
/// Seeds the random number generator with \p value.
///
/// \param value seed value for the random-number generator
/// \param queue command queue to perform the operation
///
/// If no seed value is provided, \c default_seed is used.
void seed(result_type value, command_queue &queue)
{
(void) queue;
m_seed = value;
}
/// \overload
void seed(command_queue &queue)
{
seed(default_seed, queue);
}
/// Generates random numbers and stores them to the range [\p first, \p last).
template<class OutputIterator>
void generate(OutputIterator first, OutputIterator last, command_queue &queue)
{
size_t size = detail::iterator_range_size(first, last);
kernel fill_kernel(m_program, "fill");
fill_kernel.set_arg(1, m_multiplicands);
fill_kernel.set_arg(2, first.get_buffer());
size_t offset = 0;
for(;;){
size_t count = 0;
if(size > threads){
count = (std::min)(static_cast<size_t>(threads), size - offset);
}
else {
count = size;
}
fill_kernel.set_arg(0, static_cast<const uint_>(m_seed));
fill_kernel.set_arg(3, static_cast<const uint_>(offset));
queue.enqueue_1d_range_kernel(fill_kernel, 0, count, 0);
offset += count;
if(offset >= size){
break;
}
update_seed(queue);
}
}
/// \internal_
void generate(discard_iterator first, discard_iterator last, command_queue &queue)
{
(void) queue;
size_t size = detail::iterator_range_size(first, last);
uint_ max_mult =
detail::read_single_value<T>(m_multiplicands, threads-1, queue);
while(size >= threads) {
m_seed *= max_mult;
size -= threads;
}
m_seed *=
detail::read_single_value<T>(m_multiplicands, size-1, queue);
}
/// Generates random numbers, transforms them with \p op, and then stores
/// them to the range [\p first, \p last).
template<class OutputIterator, class Function>
void generate(OutputIterator first, OutputIterator last, Function op, command_queue &queue)
{
vector<T> tmp(std::distance(first, last), queue.get_context());
generate(tmp.begin(), tmp.end(), queue);
transform(tmp.begin(), tmp.end(), first, op, queue);
}
/// Generates \p z random numbers and discards them.
void discard(size_t z, command_queue &queue)
{
generate(discard_iterator(0), discard_iterator(z), queue);
}
private:
/// \internal_
/// Generates the multiplicands for each thread
void generate_multiplicands(command_queue &queue)
{
kernel multiplicand_kernel =
m_program.create_kernel("multiplicand");
multiplicand_kernel.set_arg(0, m_multiplicands);
queue.enqueue_task(multiplicand_kernel);
}
/// \internal_
void update_seed(command_queue &queue)
{
m_seed *=
detail::read_single_value<T>(m_multiplicands, threads-1, queue);
}
/// \internal_
void load_program()
{
boost::shared_ptr<program_cache> cache =
program_cache::get_global_cache(m_context);
std::string cache_key =
std::string("__boost_linear_congruential_engine_") + type_name<T>();
const char source[] =
"__kernel void multiplicand(__global uint *multiplicands)\n"
"{\n"
" uint a = 1099087573;\n"
" multiplicands[0] = a;\n"
" for(uint i = 1; i < 1024; i++){\n"
" multiplicands[i] = a * multiplicands[i-1];\n"
" }\n"
"}\n"
"__kernel void fill(const uint seed,\n"
" __global uint *multiplicands,\n"
" __global uint *result,"
" const uint offset)\n"
"{\n"
" const uint i = get_global_id(0);\n"
" result[offset+i] = seed * multiplicands[i];\n"
"}\n";
m_program = cache->get_or_build(cache_key, std::string(), source, m_context);
}
private:
context m_context;
program m_program;
T m_seed;
buffer m_multiplicands;
};
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_RANDOM_LINEAR_CONGRUENTIAL_ENGINE_HPP