js8call/.svn/pristine/d2/d2f0cca0b264cae49d86ee39d9cfed11fc03155d.svn-base
2018-02-08 21:28:33 -05:00

1698 lines
65 KiB
Plaintext

//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_VECTOR_PROXY_
#define _BOOST_UBLAS_VECTOR_PROXY_
#include <boost/numeric/ublas/vector_expression.hpp>
#include <boost/numeric/ublas/detail/vector_assign.hpp>
#include <boost/numeric/ublas/detail/temporary.hpp>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
/** \brief A vector referencing a continuous subvector of elements of vector \c v containing all elements specified by \c range.
*
* A vector range can be used as a normal vector in any expression.
* If the specified range falls outside that of the index range of the vector, then
* the \c vector_range is not a well formed \i Vector \i Expression and access to an
* element outside of index range of the vector is \b undefined.
*
* \tparam V the type of vector referenced (for example \c vector<double>)
*/
template<class V>
class vector_range:
public vector_expression<vector_range<V> > {
typedef vector_range<V> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<self_type>::operator ();
#endif
typedef const V const_vector_type;
typedef V vector_type;
typedef typename V::size_type size_type;
typedef typename V::difference_type difference_type;
typedef typename V::value_type value_type;
typedef typename V::const_reference const_reference;
typedef typename boost::mpl::if_<boost::is_const<V>,
typename V::const_reference,
typename V::reference>::type reference;
typedef typename boost::mpl::if_<boost::is_const<V>,
typename V::const_closure_type,
typename V::closure_type>::type vector_closure_type;
typedef basic_range<size_type, difference_type> range_type;
typedef const self_type const_closure_type;
typedef self_type closure_type;
typedef typename storage_restrict_traits<typename V::storage_category,
dense_proxy_tag>::storage_category storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_range (vector_type &data, const range_type &r):
data_ (data), r_ (r.preprocess (data.size ())) {
// Early checking of preconditions here.
// BOOST_UBLAS_CHECK (r_.start () <= data_.size () &&
// r_.start () + r_.size () <= data_.size (), bad_index ());
}
BOOST_UBLAS_INLINE
vector_range (const vector_closure_type &data, const range_type &r, bool):
data_ (data), r_ (r.preprocess (data.size ())) {
// Early checking of preconditions here.
// BOOST_UBLAS_CHECK (r_.start () <= data_.size () &&
// r_.start () + r_.size () <= data_.size (), bad_index ());
}
// Accessors
BOOST_UBLAS_INLINE
size_type start () const {
return r_.start ();
}
BOOST_UBLAS_INLINE
size_type size () const {
return r_.size ();
}
// Storage accessors
BOOST_UBLAS_INLINE
const vector_closure_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
vector_closure_type &data () {
return data_;
}
// Element access
#ifndef BOOST_UBLAS_PROXY_CONST_MEMBER
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return data_ (r_ (i));
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
return data_ (r_ (i));
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return (*this) (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return (*this) (i);
}
#else
BOOST_UBLAS_INLINE
reference operator () (size_type i) const {
return data_ (r_ (i));
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) const {
return (*this) (i);
}
#endif
// ISSUE can this be done in free project function?
// Although a const function can create a non-const proxy to a non-const object
// Critical is that vector_type and data_ (vector_closure_type) are const correct
BOOST_UBLAS_INLINE
vector_range<vector_type> project (const range_type &r) const {
return vector_range<vector_type> (data_, r_.compose (r.preprocess (data_.size ())), false);
}
// Assignment
BOOST_UBLAS_INLINE
vector_range &operator = (const vector_range &vr) {
// ISSUE need a temporary, proxy can be overlaping alias
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (vr));
return *this;
}
BOOST_UBLAS_INLINE
vector_range &assign_temporary (vector_range &vr) {
// assign elements, proxied container remains the same
vector_assign<scalar_assign> (*this, vr);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_range &operator = (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_range &assign (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_range &operator += (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (*this + ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_range &plus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_range &operator -= (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (*this - ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_range &minus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_range &operator *= (const AT &at) {
vector_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_range &operator /= (const AT &at) {
vector_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const vector_range &vr) const {
return (*this).data_.same_closure (vr.data_);
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const vector_range &vr) const {
return (*this).data_ == vr.data_ && r_ == vr.r_;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (vector_range vr) {
if (this != &vr) {
BOOST_UBLAS_CHECK (size () == vr.size (), bad_size ());
// Sparse ranges may be nonconformant now.
// std::swap_ranges (begin (), end (), vr.begin ());
vector_swap<scalar_swap> (*this, vr);
}
}
BOOST_UBLAS_INLINE
friend void swap (vector_range vr1, vector_range vr2) {
vr1.swap (vr2);
}
// Iterator types
private:
typedef typename V::const_iterator const_subiterator_type;
typedef typename boost::mpl::if_<boost::is_const<V>,
typename V::const_iterator,
typename V::iterator>::type subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator<vector_range<vector_type>,
typename subiterator_type::iterator_category> iterator;
typedef indexed_const_iterator<vector_range<vector_type>,
typename const_subiterator_type::iterator_category> const_iterator;
#else
class const_iterator;
class iterator;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
const_subiterator_type it (data_.find (start () + i));
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator (*this, it.index ());
#else
return const_iterator (*this, it);
#endif
}
BOOST_UBLAS_INLINE
iterator find (size_type i) {
subiterator_type it (data_.find (start () + i));
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator (*this, it.index ());
#else
return iterator (*this, it);
#endif
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator:
public container_const_reference<vector_range>,
public iterator_base_traits<typename const_subiterator_type::iterator_category>::template
iterator_base<const_iterator, value_type>::type {
public:
typedef typename const_subiterator_type::difference_type difference_type;
typedef typename const_subiterator_type::value_type value_type;
typedef typename const_subiterator_type::reference reference;
typedef typename const_subiterator_type::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &vr, const const_subiterator_type &it):
container_const_reference<self_type> (vr), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it_.index () - (*this) ().start ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator:
public container_reference<vector_range>,
public iterator_base_traits<typename subiterator_type::iterator_category>::template
iterator_base<iterator, value_type>::type {
public:
typedef typename subiterator_type::difference_type difference_type;
typedef typename subiterator_type::value_type value_type;
typedef typename subiterator_type::reference reference;
typedef typename subiterator_type::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator (self_type &vr, const subiterator_type &it):
container_reference<self_type> (vr), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return *it_;
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it_.index () - (*this) ().start ();
}
// Assignment
BOOST_UBLAS_INLINE
iterator &operator = (const iterator &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ < it.it_;
}
private:
subiterator_type it_;
friend class const_iterator;
};
#endif
BOOST_UBLAS_INLINE
iterator begin () {
return find (0);
}
BOOST_UBLAS_INLINE
iterator end () {
return find (size ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
typedef reverse_iterator_base<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
private:
vector_closure_type data_;
range_type r_;
};
// ------------------
// Simple Projections
// ------------------
/** \brief Return a \c vector_range on a specified vector, a start and stop index.
* Return a \c vector_range on a specified vector, a start and stop index. The resulting \c vector_range can be manipulated like a normal vector.
* If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed
* Vector Expression and access to an element outside of index range of the vector is \b undefined.
*/
template<class V>
BOOST_UBLAS_INLINE
vector_range<V> subrange (V &data, typename V::size_type start, typename V::size_type stop) {
typedef basic_range<typename V::size_type, typename V::difference_type> range_type;
return vector_range<V> (data, range_type (start, stop));
}
/** \brief Return a \c const \c vector_range on a specified vector, a start and stop index.
* Return a \c const \c vector_range on a specified vector, a start and stop index. The resulting \c const \c vector_range can be manipulated like a normal vector.
*If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed
* Vector Expression and access to an element outside of index range of the vector is \b undefined.
*/
template<class V>
BOOST_UBLAS_INLINE
vector_range<const V> subrange (const V &data, typename V::size_type start, typename V::size_type stop) {
typedef basic_range<typename V::size_type, typename V::difference_type> range_type;
return vector_range<const V> (data, range_type (start, stop));
}
// -------------------
// Generic Projections
// -------------------
/** \brief Return a \c const \c vector_range on a specified vector and \c range
* Return a \c const \c vector_range on a specified vector and \c range. The resulting \c vector_range can be manipulated like a normal vector.
* If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed
* Vector Expression and access to an element outside of index range of the vector is \b undefined.
*/
template<class V>
BOOST_UBLAS_INLINE
vector_range<V> project (V &data, typename vector_range<V>::range_type const &r) {
return vector_range<V> (data, r);
}
/** \brief Return a \c vector_range on a specified vector and \c range
* Return a \c vector_range on a specified vector and \c range. The resulting \c vector_range can be manipulated like a normal vector.
* If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed
* Vector Expression and access to an element outside of index range of the vector is \b undefined.
*/
template<class V>
BOOST_UBLAS_INLINE
const vector_range<const V> project (const V &data, typename vector_range<V>::range_type const &r) {
// ISSUE was: return vector_range<V> (const_cast<V &> (data), r);
return vector_range<const V> (data, r);
}
/** \brief Return a \c const \c vector_range on a specified vector and const \c range
* Return a \c const \c vector_range on a specified vector and const \c range. The resulting \c vector_range can be manipulated like a normal vector.
* If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed
* Vector Expression and access to an element outside of index range of the vector is \b undefined.
*/
template<class V>
BOOST_UBLAS_INLINE
vector_range<V> project (vector_range<V> &data, const typename vector_range<V>::range_type &r) {
return data.project (r);
}
/** \brief Return a \c vector_range on a specified vector and const \c range
* Return a \c vector_range on a specified vector and const \c range. The resulting \c vector_range can be manipulated like a normal vector.
* If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed
* Vector Expression and access to an element outside of index range of the vector is \b undefined.
*/
template<class V>
BOOST_UBLAS_INLINE
const vector_range<V> project (const vector_range<V> &data, const typename vector_range<V>::range_type &r) {
return data.project (r);
}
// Specialization of temporary_traits
template <class V>
struct vector_temporary_traits< vector_range<V> >
: vector_temporary_traits< V > {} ;
template <class V>
struct vector_temporary_traits< const vector_range<V> >
: vector_temporary_traits< V > {} ;
/** \brief A vector referencing a non continuous subvector of elements of vector v containing all elements specified by \c slice.
*
* A vector slice can be used as a normal vector in any expression.
* If the specified slice falls outside that of the index slice of the vector, then
* the \c vector_slice is not a well formed \i Vector \i Expression and access to an
* element outside of index slice of the vector is \b undefined.
*
* A slice is a generalization of a range. In a range going from \f$a\f$ to \f$b\f$,
* all elements belong to the range. In a slice, a \i \f$step\f$ can be specified meaning to
* take one element over \f$step\f$ in the range specified from \f$a\f$ to \f$b\f$.
* Obviously, a slice with a \f$step\f$ of 1 is equivalent to a range.
*
* \tparam V the type of vector referenced (for example \c vector<double>)
*/
template<class V>
class vector_slice:
public vector_expression<vector_slice<V> > {
typedef vector_slice<V> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<self_type>::operator ();
#endif
typedef const V const_vector_type;
typedef V vector_type;
typedef typename V::size_type size_type;
typedef typename V::difference_type difference_type;
typedef typename V::value_type value_type;
typedef typename V::const_reference const_reference;
typedef typename boost::mpl::if_<boost::is_const<V>,
typename V::const_reference,
typename V::reference>::type reference;
typedef typename boost::mpl::if_<boost::is_const<V>,
typename V::const_closure_type,
typename V::closure_type>::type vector_closure_type;
typedef basic_range<size_type, difference_type> range_type;
typedef basic_slice<size_type, difference_type> slice_type;
typedef const self_type const_closure_type;
typedef self_type closure_type;
typedef typename storage_restrict_traits<typename V::storage_category,
dense_proxy_tag>::storage_category storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_slice (vector_type &data, const slice_type &s):
data_ (data), s_ (s.preprocess (data.size ())) {
// Early checking of preconditions here.
// BOOST_UBLAS_CHECK (s_.start () <= data_.size () &&
// s_.start () + s_.stride () * (s_.size () - (s_.size () > 0)) <= data_.size (), bad_index ());
}
BOOST_UBLAS_INLINE
vector_slice (const vector_closure_type &data, const slice_type &s, int):
data_ (data), s_ (s.preprocess (data.size ())) {
// Early checking of preconditions here.
// BOOST_UBLAS_CHECK (s_.start () <= data_.size () &&
// s_.start () + s_.stride () * (s_.size () - (s_.size () > 0)) <= data_.size (), bad_index ());
}
// Accessors
BOOST_UBLAS_INLINE
size_type start () const {
return s_.start ();
}
BOOST_UBLAS_INLINE
difference_type stride () const {
return s_.stride ();
}
BOOST_UBLAS_INLINE
size_type size () const {
return s_.size ();
}
// Storage accessors
BOOST_UBLAS_INLINE
const vector_closure_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
vector_closure_type &data () {
return data_;
}
// Element access
#ifndef BOOST_UBLAS_PROXY_CONST_MEMBER
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return data_ (s_ (i));
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
return data_ (s_ (i));
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return (*this) (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return (*this) (i);
}
#else
BOOST_UBLAS_INLINE
reference operator () (size_type i) const {
return data_ (s_ (i));
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) const {
return (*this) (i);
}
#endif
// ISSUE can this be done in free project function?
// Although a const function can create a non-const proxy to a non-const object
// Critical is that vector_type and data_ (vector_closure_type) are const correct
BOOST_UBLAS_INLINE
vector_slice<vector_type> project (const range_type &r) const {
return vector_slice<vector_type> (data_, s_.compose (r.preprocess (data_.size ())), false);
}
BOOST_UBLAS_INLINE
vector_slice<vector_type> project (const slice_type &s) const {
return vector_slice<vector_type> (data_, s_.compose (s.preprocess (data_.size ())), false);
}
// Assignment
BOOST_UBLAS_INLINE
vector_slice &operator = (const vector_slice &vs) {
// ISSUE need a temporary, proxy can be overlaping alias
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (vs));
return *this;
}
BOOST_UBLAS_INLINE
vector_slice &assign_temporary (vector_slice &vs) {
// assign elements, proxied container remains the same
vector_assign<scalar_assign> (*this, vs);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_slice &operator = (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_slice &assign (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_slice &operator += (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (*this + ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_slice &plus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_slice &operator -= (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (*this - ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_slice &minus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_slice &operator *= (const AT &at) {
vector_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_slice &operator /= (const AT &at) {
vector_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const vector_slice &vr) const {
return (*this).data_.same_closure (vr.data_);
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const vector_slice &vs) const {
return (*this).data_ == vs.data_ && s_ == vs.s_;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (vector_slice vs) {
if (this != &vs) {
BOOST_UBLAS_CHECK (size () == vs.size (), bad_size ());
// Sparse ranges may be nonconformant now.
// std::swap_ranges (begin (), end (), vs.begin ());
vector_swap<scalar_swap> (*this, vs);
}
}
BOOST_UBLAS_INLINE
friend void swap (vector_slice vs1, vector_slice vs2) {
vs1.swap (vs2);
}
// Iterator types
private:
// Use slice as an index - FIXME this fails for packed assignment
typedef typename slice_type::const_iterator const_subiterator_type;
typedef typename slice_type::const_iterator subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator<vector_slice<vector_type>,
typename vector_type::iterator::iterator_category> iterator;
typedef indexed_const_iterator<vector_slice<vector_type>,
typename vector_type::const_iterator::iterator_category> const_iterator;
#else
class const_iterator;
class iterator;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator (*this, i);
#else
return const_iterator (*this, s_.begin () + i);
#endif
}
BOOST_UBLAS_INLINE
iterator find (size_type i) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator (*this, i);
#else
return iterator (*this, s_.begin () + i);
#endif
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator:
public container_const_reference<vector_slice>,
public iterator_base_traits<typename V::const_iterator::iterator_category>::template
iterator_base<const_iterator, value_type>::type {
public:
typedef typename V::const_iterator::difference_type difference_type;
typedef typename V::const_iterator::value_type value_type;
typedef typename V::const_reference reference; //FIXME due to indexing access
typedef typename V::const_iterator::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &vs, const const_subiterator_type &it):
container_const_reference<self_type> (vs), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
// FIXME replace find with at_element
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*this) ().data_ (*it_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it_.index ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator:
public container_reference<vector_slice>,
public iterator_base_traits<typename V::iterator::iterator_category>::template
iterator_base<iterator, value_type>::type {
public:
typedef typename V::iterator::difference_type difference_type;
typedef typename V::iterator::value_type value_type;
typedef typename V::reference reference; //FIXME due to indexing access
typedef typename V::iterator::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator (self_type &vs, const subiterator_type &it):
container_reference<self_type> (vs), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
// FIXME replace find with at_element
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*this) ().data_ (*it_);
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it_.index ();
}
// Assignment
BOOST_UBLAS_INLINE
iterator &operator = (const iterator &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ < it.it_;
}
private:
subiterator_type it_;
friend class const_iterator;
};
#endif
BOOST_UBLAS_INLINE
iterator begin () {
return find (0);
}
BOOST_UBLAS_INLINE
iterator end () {
return find (size ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
typedef reverse_iterator_base<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
private:
vector_closure_type data_;
slice_type s_;
};
// Simple Projections
template<class V>
BOOST_UBLAS_INLINE
vector_slice<V> subslice (V &data, typename V::size_type start, typename V::difference_type stride, typename V::size_type size) {
typedef basic_slice<typename V::size_type, typename V::difference_type> slice_type;
return vector_slice<V> (data, slice_type (start, stride, size));
}
template<class V>
BOOST_UBLAS_INLINE
vector_slice<const V> subslice (const V &data, typename V::size_type start, typename V::difference_type stride, typename V::size_type size) {
typedef basic_slice<typename V::size_type, typename V::difference_type> slice_type;
return vector_slice<const V> (data, slice_type (start, stride, size));
}
// Generic Projections
template<class V>
BOOST_UBLAS_INLINE
vector_slice<V> project (V &data, const typename vector_slice<V>::slice_type &s) {
return vector_slice<V> (data, s);
}
template<class V>
BOOST_UBLAS_INLINE
const vector_slice<const V> project (const V &data, const typename vector_slice<V>::slice_type &s) {
// ISSUE was: return vector_slice<V> (const_cast<V &> (data), s);
return vector_slice<const V> (data, s);
}
template<class V>
BOOST_UBLAS_INLINE
vector_slice<V> project (vector_slice<V> &data, const typename vector_slice<V>::slice_type &s) {
return data.project (s);
}
template<class V>
BOOST_UBLAS_INLINE
const vector_slice<V> project (const vector_slice<V> &data, const typename vector_slice<V>::slice_type &s) {
return data.project (s);
}
// ISSUE in the following two functions it would be logical to use vector_slice<V>::range_type but this confuses VC7.1 and 8.0
template<class V>
BOOST_UBLAS_INLINE
vector_slice<V> project (vector_slice<V> &data, const typename vector_range<V>::range_type &r) {
return data.project (r);
}
template<class V>
BOOST_UBLAS_INLINE
const vector_slice<V> project (const vector_slice<V> &data, const typename vector_range<V>::range_type &r) {
return data.project (r);
}
// Specialization of temporary_traits
template <class V>
struct vector_temporary_traits< vector_slice<V> >
: vector_temporary_traits< V > {} ;
template <class V>
struct vector_temporary_traits< const vector_slice<V> >
: vector_temporary_traits< V > {} ;
// Vector based indirection class
// Contributed by Toon Knapen.
// Extended and optimized by Kresimir Fresl.
/** \brief A vector referencing a non continuous subvector of elements given another vector of indices.
*
* It is the most general version of any subvectors because it uses another vector of indices to reference
* the subvector.
*
* The vector of indices can be of any type with the restriction that its elements must be
* type-compatible with the size_type \c of the container. In practice, the following are good candidates:
* - \c boost::numeric::ublas::indirect_array<A> where \c A can be \c int, \c size_t, \c long, etc...
* - \c std::vector<A> where \c A can \c int, \c size_t, \c long, etc...
* - \c boost::numeric::ublas::vector<int> can work too (\c int can be replaced by another integer type)
* - etc...
*
* An indirect vector can be used as a normal vector in any expression. If the specified indirect vector
* falls outside that of the indices of the vector, then the \c vector_indirect is not a well formed
* \i Vector \i Expression and access to an element outside of indices of the vector is \b undefined.
*
* \tparam V the type of vector referenced (for example \c vector<double>)
* \tparam IA the type of index vector. Default is \c ublas::indirect_array<>
*/
template<class V, class IA>
class vector_indirect:
public vector_expression<vector_indirect<V, IA> > {
typedef vector_indirect<V, IA> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<self_type>::operator ();
#endif
typedef const V const_vector_type;
typedef V vector_type;
typedef const IA const_indirect_array_type;
typedef IA indirect_array_type;
typedef typename V::size_type size_type;
typedef typename V::difference_type difference_type;
typedef typename V::value_type value_type;
typedef typename V::const_reference const_reference;
typedef typename boost::mpl::if_<boost::is_const<V>,
typename V::const_reference,
typename V::reference>::type reference;
typedef typename boost::mpl::if_<boost::is_const<V>,
typename V::const_closure_type,
typename V::closure_type>::type vector_closure_type;
typedef basic_range<size_type, difference_type> range_type;
typedef basic_slice<size_type, difference_type> slice_type;
typedef const self_type const_closure_type;
typedef self_type closure_type;
typedef typename storage_restrict_traits<typename V::storage_category,
dense_proxy_tag>::storage_category storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_indirect (vector_type &data, size_type size):
data_ (data), ia_ (size) {}
BOOST_UBLAS_INLINE
vector_indirect (vector_type &data, const indirect_array_type &ia):
data_ (data), ia_ (ia.preprocess (data.size ())) {}
BOOST_UBLAS_INLINE
vector_indirect (const vector_closure_type &data, const indirect_array_type &ia, int):
data_ (data), ia_ (ia.preprocess (data.size ())) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return ia_.size ();
}
BOOST_UBLAS_INLINE
const_indirect_array_type &indirect () const {
return ia_;
}
BOOST_UBLAS_INLINE
indirect_array_type &indirect () {
return ia_;
}
// Storage accessors
BOOST_UBLAS_INLINE
const vector_closure_type &data () const {
return data_;
}
BOOST_UBLAS_INLINE
vector_closure_type &data () {
return data_;
}
// Element access
#ifndef BOOST_UBLAS_PROXY_CONST_MEMBER
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return data_ (ia_ (i));
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
return data_ (ia_ (i));
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return (*this) (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return (*this) (i);
}
#else
BOOST_UBLAS_INLINE
reference operator () (size_type i) const {
return data_ (ia_ (i));
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) const {
return (*this) (i);
}
#endif
// ISSUE can this be done in free project function?
// Although a const function can create a non-const proxy to a non-const object
// Critical is that vector_type and data_ (vector_closure_type) are const correct
BOOST_UBLAS_INLINE
vector_indirect<vector_type, indirect_array_type> project (const range_type &r) const {
return vector_indirect<vector_type, indirect_array_type> (data_, ia_.compose (r.preprocess (data_.size ())), 0);
}
BOOST_UBLAS_INLINE
vector_indirect<vector_type, indirect_array_type> project (const slice_type &s) const {
return vector_indirect<vector_type, indirect_array_type> (data_, ia_.compose (s.preprocess (data_.size ())), 0);
}
BOOST_UBLAS_INLINE
vector_indirect<vector_type, indirect_array_type> project (const indirect_array_type &ia) const {
return vector_indirect<vector_type, indirect_array_type> (data_, ia_.compose (ia.preprocess (data_.size ())), 0);
}
// Assignment
BOOST_UBLAS_INLINE
vector_indirect &operator = (const vector_indirect &vi) {
// ISSUE need a temporary, proxy can be overlaping alias
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (vi));
return *this;
}
BOOST_UBLAS_INLINE
vector_indirect &assign_temporary (vector_indirect &vi) {
// assign elements, proxied container remains the same
vector_assign<scalar_assign> (*this, vi);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_indirect &operator = (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_indirect &assign (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_indirect &operator += (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (*this + ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_indirect &plus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_plus_assign> (*this, ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_indirect &operator -= (const vector_expression<AE> &ae) {
vector_assign<scalar_assign> (*this, typename vector_temporary_traits<V>::type (*this - ae));
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_indirect &minus_assign (const vector_expression<AE> &ae) {
vector_assign<scalar_minus_assign> (*this, ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_indirect &operator *= (const AT &at) {
vector_assign_scalar<scalar_multiplies_assign> (*this, at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_indirect &operator /= (const AT &at) {
vector_assign_scalar<scalar_divides_assign> (*this, at);
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const vector_indirect &/*vr*/) const {
return true;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const vector_indirect &vi) const {
return (*this).data_ == vi.data_ && ia_ == vi.ia_;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (vector_indirect vi) {
if (this != &vi) {
BOOST_UBLAS_CHECK (size () == vi.size (), bad_size ());
// Sparse ranges may be nonconformant now.
// std::swap_ranges (begin (), end (), vi.begin ());
vector_swap<scalar_swap> (*this, vi);
}
}
BOOST_UBLAS_INLINE
friend void swap (vector_indirect vi1, vector_indirect vi2) {
vi1.swap (vi2);
}
// Iterator types
private:
// Use indirect array as an index - FIXME this fails for packed assignment
typedef typename IA::const_iterator const_subiterator_type;
typedef typename IA::const_iterator subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_iterator<vector_indirect<vector_type, indirect_array_type>,
typename vector_type::iterator::iterator_category> iterator;
typedef indexed_const_iterator<vector_indirect<vector_type, indirect_array_type>,
typename vector_type::const_iterator::iterator_category> const_iterator;
#else
class const_iterator;
class iterator;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator (*this, i);
#else
return const_iterator (*this, ia_.begin () + i);
#endif
}
BOOST_UBLAS_INLINE
iterator find (size_type i) {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return iterator (*this, i);
#else
return iterator (*this, ia_.begin () + i);
#endif
}
// Iterators simply are indices.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator:
public container_const_reference<vector_indirect>,
public iterator_base_traits<typename V::const_iterator::iterator_category>::template
iterator_base<const_iterator, value_type>::type {
public:
typedef typename V::const_iterator::difference_type difference_type;
typedef typename V::const_iterator::value_type value_type;
typedef typename V::const_reference reference; //FIXME due to indexing access
typedef typename V::const_iterator::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &vi, const const_subiterator_type &it):
container_const_reference<self_type> (vi), it_ (it) {}
BOOST_UBLAS_INLINE
const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here
container_const_reference<self_type> (it ()), it_ (it.it_) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
// FIXME replace find with at_element
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*this) ().data_ (*it_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it_.index ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class iterator:
public container_reference<vector_indirect>,
public iterator_base_traits<typename V::iterator::iterator_category>::template
iterator_base<iterator, value_type>::type {
public:
typedef typename V::iterator::difference_type difference_type;
typedef typename V::iterator::value_type value_type;
typedef typename V::reference reference; //FIXME due to indexing access
typedef typename V::iterator::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
iterator ():
container_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
iterator (self_type &vi, const subiterator_type &it):
container_reference<self_type> (vi), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
iterator &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
reference operator * () const {
// FIXME replace find with at_element
BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
return (*this) ().data_ (*it_);
}
BOOST_UBLAS_INLINE
reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it_.index ();
}
// Assignment
BOOST_UBLAS_INLINE
iterator &operator = (const iterator &it) {
container_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ < it.it_;
}
private:
subiterator_type it_;
friend class const_iterator;
};
#endif
BOOST_UBLAS_INLINE
iterator begin () {
return find (0);
}
BOOST_UBLAS_INLINE
iterator end () {
return find (size ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
typedef reverse_iterator_base<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
private:
vector_closure_type data_;
indirect_array_type ia_;
};
// Projections
template<class V, class A>
BOOST_UBLAS_INLINE
vector_indirect<V, indirect_array<A> > project (V &data, const indirect_array<A> &ia) {
return vector_indirect<V, indirect_array<A> > (data, ia);
}
template<class V, class A>
BOOST_UBLAS_INLINE
const vector_indirect<const V, indirect_array<A> > project (const V &data, const indirect_array<A> &ia) {
// ISSUE was: return vector_indirect<V, indirect_array<A> > (const_cast<V &> (data), ia)
return vector_indirect<const V, indirect_array<A> > (data, ia);
}
template<class V, class IA>
BOOST_UBLAS_INLINE
vector_indirect<V, IA> project (vector_indirect<V, IA> &data, const typename vector_indirect<V, IA>::range_type &r) {
return data.project (r);
}
template<class V, class IA>
BOOST_UBLAS_INLINE
const vector_indirect<V, IA> project (const vector_indirect<V, IA> &data, const typename vector_indirect<V, IA>::range_type &r) {
return data.project (r);
}
template<class V, class IA>
BOOST_UBLAS_INLINE
vector_indirect<V, IA> project (vector_indirect<V, IA> &data, const typename vector_indirect<V, IA>::slice_type &s) {
return data.project (s);
}
template<class V, class IA>
BOOST_UBLAS_INLINE
const vector_indirect<V, IA> project (const vector_indirect<V, IA> &data, const typename vector_indirect<V, IA>::slice_type &s) {
return data.project (s);
}
template<class V, class A>
BOOST_UBLAS_INLINE
vector_indirect<V, indirect_array<A> > project (vector_indirect<V, indirect_array<A> > &data, const indirect_array<A> &ia) {
return data.project (ia);
}
template<class V, class A>
BOOST_UBLAS_INLINE
const vector_indirect<V, indirect_array<A> > project (const vector_indirect<V, indirect_array<A> > &data, const indirect_array<A> &ia) {
return data.project (ia);
}
// Specialization of temporary_traits
template <class V>
struct vector_temporary_traits< vector_indirect<V> >
: vector_temporary_traits< V > {} ;
template <class V>
struct vector_temporary_traits< const vector_indirect<V> >
: vector_temporary_traits< V > {} ;
}}}
#endif