103 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
			
		
		
	
	
			103 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
subroutine lorentzian(y,npts,a)
 | 
						|
 | 
						|
! Input:  y(npts); assume x(i)=i, i=1,npts
 | 
						|
! Output: a(5)
 | 
						|
!         a(1) = baseline
 | 
						|
!         a(2) = amplitude
 | 
						|
!         a(3) = x0
 | 
						|
!         a(4) = width
 | 
						|
!         a(5) = chisqr
 | 
						|
 | 
						|
  real y(npts)
 | 
						|
  real a(5)
 | 
						|
  real deltaa(4)
 | 
						|
 | 
						|
  a=0.
 | 
						|
  df=12000.0/8192.0                               !df = 1.465 Hz
 | 
						|
  width=0.
 | 
						|
  ipk=0
 | 
						|
  ymax=-1.e30
 | 
						|
  do i=1,npts
 | 
						|
     if(y(i).gt.ymax) then
 | 
						|
        ymax=y(i)
 | 
						|
        ipk=i
 | 
						|
     endif
 | 
						|
!     write(50,3001) i,i*df,y(i)
 | 
						|
!3001 format(i6,2f12.3)
 | 
						|
  enddo
 | 
						|
!  base=(sum(y(ipk-149:ipk-50)) + sum(y(ipk+51:ipk+150)))/200.0
 | 
						|
  base=(sum(y(1:20)) + sum(y(npts-19:npts)))/40.0
 | 
						|
  stest=ymax - 0.5*(ymax-base)
 | 
						|
  ssum=y(ipk)
 | 
						|
  do i=1,50
 | 
						|
     if(ipk+i.gt.npts) exit
 | 
						|
     if(y(ipk+i).lt.stest) exit
 | 
						|
     ssum=ssum + y(ipk+i)
 | 
						|
  enddo
 | 
						|
  do i=1,50
 | 
						|
     if(ipk-i.lt.1) exit
 | 
						|
     if(y(ipk-i).lt.stest) exit
 | 
						|
     ssum=ssum + y(ipk-i)
 | 
						|
  enddo
 | 
						|
  ww=ssum/y(ipk)
 | 
						|
  width=2
 | 
						|
  t=ww*ww - 5.67
 | 
						|
  if(t.gt.0.0) width=sqrt(t)
 | 
						|
  a(1)=base
 | 
						|
  a(2)=ymax-base
 | 
						|
  a(3)=ipk
 | 
						|
  a(4)=width
 | 
						|
 | 
						|
! Now find Lorentzian parameters
 | 
						|
 | 
						|
  deltaa(1)=0.1
 | 
						|
  deltaa(2)=0.1
 | 
						|
  deltaa(3)=1.0
 | 
						|
  deltaa(4)=1.0
 | 
						|
  nterms=4
 | 
						|
 | 
						|
!  Start the iteration
 | 
						|
  chisqr=0.
 | 
						|
  chisqr0=1.e6
 | 
						|
  do iter=1,5
 | 
						|
     do j=1,nterms
 | 
						|
        chisq1=fchisq0(y,npts,a)
 | 
						|
        fn=0.
 | 
						|
        delta=deltaa(j)
 | 
						|
10      a(j)=a(j)+delta
 | 
						|
        chisq2=fchisq0(y,npts,a)
 | 
						|
        if(chisq2.eq.chisq1) go to 10
 | 
						|
        if(chisq2.gt.chisq1) then
 | 
						|
           delta=-delta                      !Reverse direction
 | 
						|
           a(j)=a(j)+delta
 | 
						|
           tmp=chisq1
 | 
						|
           chisq1=chisq2
 | 
						|
           chisq2=tmp
 | 
						|
        endif
 | 
						|
20      fn=fn+1.0
 | 
						|
        a(j)=a(j)+delta
 | 
						|
        chisq3=fchisq0(y,npts,a)
 | 
						|
        if(chisq3.lt.chisq2) then
 | 
						|
           chisq1=chisq2
 | 
						|
           chisq2=chisq3
 | 
						|
           go to 20
 | 
						|
        endif
 | 
						|
 | 
						|
! Find minimum of parabola defined by last three points
 | 
						|
        delta=delta*(1./(1.+(chisq1-chisq2)/(chisq3-chisq2))+0.5)
 | 
						|
        a(j)=a(j)-delta
 | 
						|
        deltaa(j)=deltaa(j)*fn/3.
 | 
						|
!          write(*,4000) iter,j,a,chisq2
 | 
						|
!4000      format(i1,i2,4f10.4,f11.3)
 | 
						|
     enddo
 | 
						|
     chisqr=fchisq0(y,npts,a)
 | 
						|
!       write(*,4000) 0,0,a,chisqr
 | 
						|
     if(chisqr/chisqr0.gt.0.99) exit
 | 
						|
     chisqr0=chisqr
 | 
						|
  enddo
 | 
						|
  a(5)=chisqr
 | 
						|
 | 
						|
  return
 | 
						|
end subroutine lorentzian
 | 
						|
 |