614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  (C) Copyright John Maddock 2006. | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP | ||
|  | #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/tools/precision.hpp> | ||
|  | #include <boost/math/policies/error_handling.hpp> | ||
|  | #include <boost/math/tools/config.hpp> | ||
|  | #include <boost/math/special_functions/sign.hpp> | ||
|  | #include <boost/cstdint.hpp> | ||
|  | #include <limits> | ||
|  | 
 | ||
|  | #ifdef BOOST_MATH_LOG_ROOT_ITERATIONS | ||
|  | #  define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp> | ||
|  | #  include BOOST_MATH_LOGGER_INCLUDE | ||
|  | #  undef BOOST_MATH_LOGGER_INCLUDE | ||
|  | #else | ||
|  | #  define BOOST_MATH_LOG_COUNT(count) | ||
|  | #endif | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ namespace tools{ | ||
|  | 
 | ||
|  | template <class T> | ||
|  | class eps_tolerance | ||
|  | { | ||
|  | public: | ||
|  |    eps_tolerance() | ||
|  |    { | ||
|  |       eps = 4 * tools::epsilon<T>(); | ||
|  |    } | ||
|  |    eps_tolerance(unsigned bits) | ||
|  |    { | ||
|  |       BOOST_MATH_STD_USING | ||
|  |       eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>())); | ||
|  |    } | ||
|  |    bool operator()(const T& a, const T& b) | ||
|  |    { | ||
|  |       BOOST_MATH_STD_USING | ||
|  |       return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b))); | ||
|  |    } | ||
|  | private: | ||
|  |    T eps; | ||
|  | }; | ||
|  | 
 | ||
|  | struct equal_floor | ||
|  | { | ||
|  |    equal_floor(){} | ||
|  |    template <class T> | ||
|  |    bool operator()(const T& a, const T& b) | ||
|  |    { | ||
|  |       BOOST_MATH_STD_USING | ||
|  |       return floor(a) == floor(b); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | struct equal_ceil | ||
|  | { | ||
|  |    equal_ceil(){} | ||
|  |    template <class T> | ||
|  |    bool operator()(const T& a, const T& b) | ||
|  |    { | ||
|  |       BOOST_MATH_STD_USING | ||
|  |       return ceil(a) == ceil(b); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | struct equal_nearest_integer | ||
|  | { | ||
|  |    equal_nearest_integer(){} | ||
|  |    template <class T> | ||
|  |    bool operator()(const T& a, const T& b) | ||
|  |    { | ||
|  |       BOOST_MATH_STD_USING | ||
|  |       return floor(a + 0.5f) == floor(b + 0.5f); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | namespace detail{ | ||
|  | 
 | ||
|  | template <class F, class T> | ||
|  | void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd) | ||
|  | { | ||
|  |    // | ||
|  |    // Given a point c inside the existing enclosing interval | ||
|  |    // [a, b] sets a = c if f(c) == 0, otherwise finds the new  | ||
|  |    // enclosing interval: either [a, c] or [c, b] and sets | ||
|  |    // d and fd to the point that has just been removed from | ||
|  |    // the interval.  In other words d is the third best guess | ||
|  |    // to the root. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING  // For ADL of std math functions | ||
|  |    T tol = tools::epsilon<T>() * 2; | ||
|  |    // | ||
|  |    // If the interval [a,b] is very small, or if c is too close  | ||
|  |    // to one end of the interval then we need to adjust the | ||
|  |    // location of c accordingly: | ||
|  |    // | ||
|  |    if((b - a) < 2 * tol * a) | ||
|  |    { | ||
|  |       c = a + (b - a) / 2; | ||
|  |    } | ||
|  |    else if(c <= a + fabs(a) * tol) | ||
|  |    { | ||
|  |       c = a + fabs(a) * tol; | ||
|  |    } | ||
|  |    else if(c >= b - fabs(b) * tol) | ||
|  |    { | ||
|  |       c = b - fabs(b) * tol; | ||
|  |    } | ||
|  |    // | ||
|  |    // OK, lets invoke f(c): | ||
|  |    // | ||
|  |    T fc = f(c); | ||
|  |    // | ||
|  |    // if we have a zero then we have an exact solution to the root: | ||
|  |    // | ||
|  |    if(fc == 0) | ||
|  |    { | ||
|  |       a = c; | ||
|  |       fa = 0; | ||
|  |       d = 0; | ||
|  |       fd = 0; | ||
|  |       return; | ||
|  |    } | ||
|  |    // | ||
|  |    // Non-zero fc, update the interval: | ||
|  |    // | ||
|  |    if(boost::math::sign(fa) * boost::math::sign(fc) < 0) | ||
|  |    { | ||
|  |       d = b; | ||
|  |       fd = fb; | ||
|  |       b = c; | ||
|  |       fb = fc; | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       d = a; | ||
|  |       fd = fa; | ||
|  |       a = c; | ||
|  |       fa= fc; | ||
|  |    } | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline T safe_div(T num, T denom, T r) | ||
|  | { | ||
|  |    // | ||
|  |    // return num / denom without overflow, | ||
|  |    // return r if overflow would occur. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING  // For ADL of std math functions | ||
|  | 
 | ||
|  |    if(fabs(denom) < 1) | ||
|  |    { | ||
|  |       if(fabs(denom * tools::max_value<T>()) <= fabs(num)) | ||
|  |          return r; | ||
|  |    } | ||
|  |    return num / denom; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb) | ||
|  | { | ||
|  |    // | ||
|  |    // Performs standard secant interpolation of [a,b] given | ||
|  |    // function evaluations f(a) and f(b).  Performs a bisection | ||
|  |    // if secant interpolation would leave us very close to either | ||
|  |    // a or b.  Rationale: we only call this function when at least | ||
|  |    // one other form of interpolation has already failed, so we know | ||
|  |    // that the function is unlikely to be smooth with a root very | ||
|  |    // close to a or b. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING  // For ADL of std math functions | ||
|  | 
 | ||
|  |    T tol = tools::epsilon<T>() * 5; | ||
|  |    T c = a - (fa / (fb - fa)) * (b - a); | ||
|  |    if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol)) | ||
|  |       return (a + b) / 2; | ||
|  |    return c; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | T quadratic_interpolate(const T& a, const T& b, T const& d, | ||
|  |                            const T& fa, const T& fb, T const& fd,  | ||
|  |                            unsigned count) | ||
|  | { | ||
|  |    // | ||
|  |    // Performs quadratic interpolation to determine the next point, | ||
|  |    // takes count Newton steps to find the location of the | ||
|  |    // quadratic polynomial. | ||
|  |    // | ||
|  |    // Point d must lie outside of the interval [a,b], it is the third | ||
|  |    // best approximation to the root, after a and b. | ||
|  |    // | ||
|  |    // Note: this does not guarantee to find a root | ||
|  |    // inside [a, b], so we fall back to a secant step should | ||
|  |    // the result be out of range. | ||
|  |    // | ||
|  |    // Start by obtaining the coefficients of the quadratic polynomial: | ||
|  |    // | ||
|  |    T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>()); | ||
|  |    T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>()); | ||
|  |    A = safe_div(T(A - B), T(d - a), T(0)); | ||
|  | 
 | ||
|  |    if(A == 0) | ||
|  |    { | ||
|  |       // failure to determine coefficients, try a secant step: | ||
|  |       return secant_interpolate(a, b, fa, fb); | ||
|  |    } | ||
|  |    // | ||
|  |    // Determine the starting point of the Newton steps: | ||
|  |    // | ||
|  |    T c; | ||
|  |    if(boost::math::sign(A) * boost::math::sign(fa) > 0) | ||
|  |    { | ||
|  |       c = a; | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       c = b; | ||
|  |    } | ||
|  |    // | ||
|  |    // Take the Newton steps: | ||
|  |    // | ||
|  |    for(unsigned i = 1; i <= count; ++i) | ||
|  |    { | ||
|  |       //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a); | ||
|  |       c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a)); | ||
|  |    } | ||
|  |    if((c <= a) || (c >= b)) | ||
|  |    { | ||
|  |       // Oops, failure, try a secant step: | ||
|  |       c = secant_interpolate(a, b, fa, fb); | ||
|  |    } | ||
|  |    return c; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | T cubic_interpolate(const T& a, const T& b, const T& d,  | ||
|  |                     const T& e, const T& fa, const T& fb,  | ||
|  |                     const T& fd, const T& fe) | ||
|  | { | ||
|  |    // | ||
|  |    // Uses inverse cubic interpolation of f(x) at points  | ||
|  |    // [a,b,d,e] to obtain an approximate root of f(x). | ||
|  |    // Points d and e lie outside the interval [a,b] | ||
|  |    // and are the third and forth best approximations | ||
|  |    // to the root that we have found so far. | ||
|  |    // | ||
|  |    // Note: this does not guarantee to find a root | ||
|  |    // inside [a, b], so we fall back to quadratic | ||
|  |    // interpolation in case of an erroneous result. | ||
|  |    // | ||
|  |    BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b | ||
|  |       << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb  | ||
|  |       << " fd = " << fd << " fe = " << fe); | ||
|  |    T q11 = (d - e) * fd / (fe - fd); | ||
|  |    T q21 = (b - d) * fb / (fd - fb); | ||
|  |    T q31 = (a - b) * fa / (fb - fa); | ||
|  |    T d21 = (b - d) * fd / (fd - fb); | ||
|  |    T d31 = (a - b) * fb / (fb - fa); | ||
|  |    BOOST_MATH_INSTRUMENT_CODE( | ||
|  |       "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31 | ||
|  |       << " d21 = " << d21 << " d31 = " << d31); | ||
|  |    T q22 = (d21 - q11) * fb / (fe - fb); | ||
|  |    T q32 = (d31 - q21) * fa / (fd - fa); | ||
|  |    T d32 = (d31 - q21) * fd / (fd - fa); | ||
|  |    T q33 = (d32 - q22) * fa / (fe - fa); | ||
|  |    T c = q31 + q32 + q33 + a; | ||
|  |    BOOST_MATH_INSTRUMENT_CODE( | ||
|  |       "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32 | ||
|  |       << " q33 = " << q33 << " c = " << c); | ||
|  | 
 | ||
|  |    if((c <= a) || (c >= b)) | ||
|  |    { | ||
|  |       // Out of bounds step, fall back to quadratic interpolation: | ||
|  |       c = quadratic_interpolate(a, b, d, fa, fb, fd, 3); | ||
|  |    BOOST_MATH_INSTRUMENT_CODE( | ||
|  |       "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c); | ||
|  |    } | ||
|  | 
 | ||
|  |    return c; | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace detail | ||
|  | 
 | ||
|  | template <class F, class T, class Tol, class Policy> | ||
|  | std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) | ||
|  | { | ||
|  |    // | ||
|  |    // Main entry point and logic for Toms Algorithm 748 | ||
|  |    // root finder. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING  // For ADL of std math functions | ||
|  | 
 | ||
|  |    static const char* function = "boost::math::tools::toms748_solve<%1%>"; | ||
|  | 
 | ||
|  |    boost::uintmax_t count = max_iter; | ||
|  |    T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe; | ||
|  |    static const T mu = 0.5f; | ||
|  | 
 | ||
|  |    // initialise a, b and fa, fb: | ||
|  |    a = ax; | ||
|  |    b = bx; | ||
|  |    if(a >= b) | ||
|  |       return boost::math::detail::pair_from_single(policies::raise_domain_error( | ||
|  |          function,  | ||
|  |          "Parameters a and b out of order: a=%1%", a, pol)); | ||
|  |    fa = fax; | ||
|  |    fb = fbx; | ||
|  | 
 | ||
|  |    if(tol(a, b) || (fa == 0) || (fb == 0)) | ||
|  |    { | ||
|  |       max_iter = 0; | ||
|  |       if(fa == 0) | ||
|  |          b = a; | ||
|  |       else if(fb == 0) | ||
|  |          a = b; | ||
|  |       return std::make_pair(a, b); | ||
|  |    } | ||
|  | 
 | ||
|  |    if(boost::math::sign(fa) * boost::math::sign(fb) > 0) | ||
|  |       return boost::math::detail::pair_from_single(policies::raise_domain_error( | ||
|  |          function,  | ||
|  |          "Parameters a and b do not bracket the root: a=%1%", a, pol)); | ||
|  |    // dummy value for fd, e and fe: | ||
|  |    fe = e = fd = 1e5F; | ||
|  | 
 | ||
|  |    if(fa != 0) | ||
|  |    { | ||
|  |       // | ||
|  |       // On the first step we take a secant step: | ||
|  |       // | ||
|  |       c = detail::secant_interpolate(a, b, fa, fb); | ||
|  |       detail::bracket(f, a, b, c, fa, fb, d, fd); | ||
|  |       --count; | ||
|  |       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | ||
|  | 
 | ||
|  |       if(count && (fa != 0) && !tol(a, b)) | ||
|  |       { | ||
|  |          // | ||
|  |          // On the second step we take a quadratic interpolation: | ||
|  |          // | ||
|  |          c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); | ||
|  |          e = d; | ||
|  |          fe = fd; | ||
|  |          detail::bracket(f, a, b, c, fa, fb, d, fd); | ||
|  |          --count; | ||
|  |          BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    while(count && (fa != 0) && !tol(a, b)) | ||
|  |    { | ||
|  |       // save our brackets: | ||
|  |       a0 = a; | ||
|  |       b0 = b; | ||
|  |       // | ||
|  |       // Starting with the third step taken | ||
|  |       // we can use either quadratic or cubic interpolation. | ||
|  |       // Cubic interpolation requires that all four function values | ||
|  |       // fa, fb, fd, and fe are distinct, should that not be the case | ||
|  |       // then variable prof will get set to true, and we'll end up | ||
|  |       // taking a quadratic step instead. | ||
|  |       // | ||
|  |       T min_diff = tools::min_value<T>() * 32; | ||
|  |       bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); | ||
|  |       if(prof) | ||
|  |       { | ||
|  |          c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); | ||
|  |          BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!"); | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); | ||
|  |       } | ||
|  |       // | ||
|  |       // re-bracket, and check for termination: | ||
|  |       // | ||
|  |       e = d; | ||
|  |       fe = fd; | ||
|  |       detail::bracket(f, a, b, c, fa, fb, d, fd); | ||
|  |       if((0 == --count) || (fa == 0) || tol(a, b)) | ||
|  |          break; | ||
|  |       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | ||
|  |       // | ||
|  |       // Now another interpolated step: | ||
|  |       // | ||
|  |       prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); | ||
|  |       if(prof) | ||
|  |       { | ||
|  |          c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3); | ||
|  |          BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!"); | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); | ||
|  |       } | ||
|  |       // | ||
|  |       // Bracket again, and check termination condition, update e: | ||
|  |       // | ||
|  |       detail::bracket(f, a, b, c, fa, fb, d, fd); | ||
|  |       if((0 == --count) || (fa == 0) || tol(a, b)) | ||
|  |          break; | ||
|  |       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | ||
|  |       // | ||
|  |       // Now we take a double-length secant step: | ||
|  |       // | ||
|  |       if(fabs(fa) < fabs(fb)) | ||
|  |       { | ||
|  |          u = a; | ||
|  |          fu = fa; | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          u = b; | ||
|  |          fu = fb; | ||
|  |       } | ||
|  |       c = u - 2 * (fu / (fb - fa)) * (b - a); | ||
|  |       if(fabs(c - u) > (b - a) / 2) | ||
|  |       { | ||
|  |          c = a + (b - a) / 2; | ||
|  |       } | ||
|  |       // | ||
|  |       // Bracket again, and check termination condition: | ||
|  |       // | ||
|  |       e = d; | ||
|  |       fe = fd; | ||
|  |       detail::bracket(f, a, b, c, fa, fb, d, fd); | ||
|  |       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | ||
|  |       BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a))); | ||
|  |       if((0 == --count) || (fa == 0) || tol(a, b)) | ||
|  |          break; | ||
|  |       // | ||
|  |       // And finally... check to see if an additional bisection step is  | ||
|  |       // to be taken, we do this if we're not converging fast enough: | ||
|  |       // | ||
|  |       if((b - a) < mu * (b0 - a0)) | ||
|  |          continue; | ||
|  |       // | ||
|  |       // bracket again on a bisection: | ||
|  |       // | ||
|  |       e = d; | ||
|  |       fe = fd; | ||
|  |       detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd); | ||
|  |       --count; | ||
|  |       BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!"); | ||
|  |       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | ||
|  |    } // while loop | ||
|  | 
 | ||
|  |    max_iter -= count; | ||
|  |    if(fa == 0) | ||
|  |    { | ||
|  |       b = a; | ||
|  |    } | ||
|  |    else if(fb == 0) | ||
|  |    { | ||
|  |       a = b; | ||
|  |    } | ||
|  |    BOOST_MATH_LOG_COUNT(max_iter) | ||
|  |    return std::make_pair(a, b); | ||
|  | } | ||
|  | 
 | ||
|  | template <class F, class T, class Tol> | ||
|  | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter) | ||
|  | { | ||
|  |    return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class F, class T, class Tol, class Policy> | ||
|  | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) | ||
|  | { | ||
|  |    max_iter -= 2; | ||
|  |    std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol); | ||
|  |    max_iter += 2; | ||
|  |    return r; | ||
|  | } | ||
|  | 
 | ||
|  | template <class F, class T, class Tol> | ||
|  | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter) | ||
|  | { | ||
|  |    return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>()); | ||
|  | } | ||
|  | 
 | ||
|  | template <class F, class T, class Tol, class Policy> | ||
|  | std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>"; | ||
|  |    // | ||
|  |    // Set up inital brackets: | ||
|  |    // | ||
|  |    T a = guess; | ||
|  |    T b = a; | ||
|  |    T fa = f(a); | ||
|  |    T fb = fa; | ||
|  |    // | ||
|  |    // Set up invocation count: | ||
|  |    // | ||
|  |    boost::uintmax_t count = max_iter - 1; | ||
|  | 
 | ||
|  |    int step = 32; | ||
|  | 
 | ||
|  |    if((fa < 0) == (guess < 0 ? !rising : rising)) | ||
|  |    { | ||
|  |       // | ||
|  |       // Zero is to the right of b, so walk upwards | ||
|  |       // until we find it: | ||
|  |       // | ||
|  |       while((boost::math::sign)(fb) == (boost::math::sign)(fa)) | ||
|  |       { | ||
|  |          if(count == 0) | ||
|  |             return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol)); | ||
|  |          // | ||
|  |          // Heuristic: normally it's best not to increase the step sizes as we'll just end up | ||
|  |          // with a really wide range to search for the root.  However, if the initial guess was *really* | ||
|  |          // bad then we need to speed up the search otherwise we'll take forever if we're orders of | ||
|  |          // magnitude out.  This happens most often if the guess is a small value (say 1) and the result | ||
|  |          // we're looking for is close to std::numeric_limits<T>::min(). | ||
|  |          // | ||
|  |          if((max_iter - count) % step == 0) | ||
|  |          { | ||
|  |             factor *= 2; | ||
|  |             if(step > 1) step /= 2; | ||
|  |          } | ||
|  |          // | ||
|  |          // Now go ahead and move our guess by "factor": | ||
|  |          // | ||
|  |          a = b; | ||
|  |          fa = fb; | ||
|  |          b *= factor; | ||
|  |          fb = f(b); | ||
|  |          --count; | ||
|  |          BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); | ||
|  |       } | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       // | ||
|  |       // Zero is to the left of a, so walk downwards | ||
|  |       // until we find it: | ||
|  |       // | ||
|  |       while((boost::math::sign)(fb) == (boost::math::sign)(fa)) | ||
|  |       { | ||
|  |          if(fabs(a) < tools::min_value<T>()) | ||
|  |          { | ||
|  |             // Escape route just in case the answer is zero! | ||
|  |             max_iter -= count; | ||
|  |             max_iter += 1; | ||
|  |             return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));  | ||
|  |          } | ||
|  |          if(count == 0) | ||
|  |             return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol)); | ||
|  |          // | ||
|  |          // Heuristic: normally it's best not to increase the step sizes as we'll just end up | ||
|  |          // with a really wide range to search for the root.  However, if the initial guess was *really* | ||
|  |          // bad then we need to speed up the search otherwise we'll take forever if we're orders of | ||
|  |          // magnitude out.  This happens most often if the guess is a small value (say 1) and the result | ||
|  |          // we're looking for is close to std::numeric_limits<T>::min(). | ||
|  |          // | ||
|  |          if((max_iter - count) % step == 0) | ||
|  |          { | ||
|  |             factor *= 2; | ||
|  |             if(step > 1) step /= 2; | ||
|  |          } | ||
|  |          // | ||
|  |          // Now go ahead and move are guess by "factor": | ||
|  |          // | ||
|  |          b = a; | ||
|  |          fb = fa; | ||
|  |          a /= factor; | ||
|  |          fa = f(a); | ||
|  |          --count; | ||
|  |          BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); | ||
|  |       } | ||
|  |    } | ||
|  |    max_iter -= count; | ||
|  |    max_iter += 1; | ||
|  |    std::pair<T, T> r = toms748_solve( | ||
|  |       f,  | ||
|  |       (a < 0 ? b : a),  | ||
|  |       (a < 0 ? a : b),  | ||
|  |       (a < 0 ? fb : fa),  | ||
|  |       (a < 0 ? fa : fb),  | ||
|  |       tol,  | ||
|  |       count,  | ||
|  |       pol); | ||
|  |    max_iter += count; | ||
|  |    BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count); | ||
|  |    BOOST_MATH_LOG_COUNT(max_iter) | ||
|  |    return r; | ||
|  | } | ||
|  | 
 | ||
|  | template <class F, class T, class Tol> | ||
|  | inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter) | ||
|  | { | ||
|  |    return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>()); | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace tools | ||
|  | } // namespace math | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP | ||
|  | 
 |