614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			614 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  (C) Copyright John Maddock 2006.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
 | |
| #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/tools/precision.hpp>
 | |
| #include <boost/math/policies/error_handling.hpp>
 | |
| #include <boost/math/tools/config.hpp>
 | |
| #include <boost/math/special_functions/sign.hpp>
 | |
| #include <boost/cstdint.hpp>
 | |
| #include <limits>
 | |
| 
 | |
| #ifdef BOOST_MATH_LOG_ROOT_ITERATIONS
 | |
| #  define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp>
 | |
| #  include BOOST_MATH_LOGGER_INCLUDE
 | |
| #  undef BOOST_MATH_LOGGER_INCLUDE
 | |
| #else
 | |
| #  define BOOST_MATH_LOG_COUNT(count)
 | |
| #endif
 | |
| 
 | |
| namespace boost{ namespace math{ namespace tools{
 | |
| 
 | |
| template <class T>
 | |
| class eps_tolerance
 | |
| {
 | |
| public:
 | |
|    eps_tolerance()
 | |
|    {
 | |
|       eps = 4 * tools::epsilon<T>();
 | |
|    }
 | |
|    eps_tolerance(unsigned bits)
 | |
|    {
 | |
|       BOOST_MATH_STD_USING
 | |
|       eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>()));
 | |
|    }
 | |
|    bool operator()(const T& a, const T& b)
 | |
|    {
 | |
|       BOOST_MATH_STD_USING
 | |
|       return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b)));
 | |
|    }
 | |
| private:
 | |
|    T eps;
 | |
| };
 | |
| 
 | |
| struct equal_floor
 | |
| {
 | |
|    equal_floor(){}
 | |
|    template <class T>
 | |
|    bool operator()(const T& a, const T& b)
 | |
|    {
 | |
|       BOOST_MATH_STD_USING
 | |
|       return floor(a) == floor(b);
 | |
|    }
 | |
| };
 | |
| 
 | |
| struct equal_ceil
 | |
| {
 | |
|    equal_ceil(){}
 | |
|    template <class T>
 | |
|    bool operator()(const T& a, const T& b)
 | |
|    {
 | |
|       BOOST_MATH_STD_USING
 | |
|       return ceil(a) == ceil(b);
 | |
|    }
 | |
| };
 | |
| 
 | |
| struct equal_nearest_integer
 | |
| {
 | |
|    equal_nearest_integer(){}
 | |
|    template <class T>
 | |
|    bool operator()(const T& a, const T& b)
 | |
|    {
 | |
|       BOOST_MATH_STD_USING
 | |
|       return floor(a + 0.5f) == floor(b + 0.5f);
 | |
|    }
 | |
| };
 | |
| 
 | |
| namespace detail{
 | |
| 
 | |
| template <class F, class T>
 | |
| void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd)
 | |
| {
 | |
|    //
 | |
|    // Given a point c inside the existing enclosing interval
 | |
|    // [a, b] sets a = c if f(c) == 0, otherwise finds the new 
 | |
|    // enclosing interval: either [a, c] or [c, b] and sets
 | |
|    // d and fd to the point that has just been removed from
 | |
|    // the interval.  In other words d is the third best guess
 | |
|    // to the root.
 | |
|    //
 | |
|    BOOST_MATH_STD_USING  // For ADL of std math functions
 | |
|    T tol = tools::epsilon<T>() * 2;
 | |
|    //
 | |
|    // If the interval [a,b] is very small, or if c is too close 
 | |
|    // to one end of the interval then we need to adjust the
 | |
|    // location of c accordingly:
 | |
|    //
 | |
|    if((b - a) < 2 * tol * a)
 | |
|    {
 | |
|       c = a + (b - a) / 2;
 | |
|    }
 | |
|    else if(c <= a + fabs(a) * tol)
 | |
|    {
 | |
|       c = a + fabs(a) * tol;
 | |
|    }
 | |
|    else if(c >= b - fabs(b) * tol)
 | |
|    {
 | |
|       c = b - fabs(b) * tol;
 | |
|    }
 | |
|    //
 | |
|    // OK, lets invoke f(c):
 | |
|    //
 | |
|    T fc = f(c);
 | |
|    //
 | |
|    // if we have a zero then we have an exact solution to the root:
 | |
|    //
 | |
|    if(fc == 0)
 | |
|    {
 | |
|       a = c;
 | |
|       fa = 0;
 | |
|       d = 0;
 | |
|       fd = 0;
 | |
|       return;
 | |
|    }
 | |
|    //
 | |
|    // Non-zero fc, update the interval:
 | |
|    //
 | |
|    if(boost::math::sign(fa) * boost::math::sign(fc) < 0)
 | |
|    {
 | |
|       d = b;
 | |
|       fd = fb;
 | |
|       b = c;
 | |
|       fb = fc;
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       d = a;
 | |
|       fd = fa;
 | |
|       a = c;
 | |
|       fa= fc;
 | |
|    }
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T safe_div(T num, T denom, T r)
 | |
| {
 | |
|    //
 | |
|    // return num / denom without overflow,
 | |
|    // return r if overflow would occur.
 | |
|    //
 | |
|    BOOST_MATH_STD_USING  // For ADL of std math functions
 | |
| 
 | |
|    if(fabs(denom) < 1)
 | |
|    {
 | |
|       if(fabs(denom * tools::max_value<T>()) <= fabs(num))
 | |
|          return r;
 | |
|    }
 | |
|    return num / denom;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb)
 | |
| {
 | |
|    //
 | |
|    // Performs standard secant interpolation of [a,b] given
 | |
|    // function evaluations f(a) and f(b).  Performs a bisection
 | |
|    // if secant interpolation would leave us very close to either
 | |
|    // a or b.  Rationale: we only call this function when at least
 | |
|    // one other form of interpolation has already failed, so we know
 | |
|    // that the function is unlikely to be smooth with a root very
 | |
|    // close to a or b.
 | |
|    //
 | |
|    BOOST_MATH_STD_USING  // For ADL of std math functions
 | |
| 
 | |
|    T tol = tools::epsilon<T>() * 5;
 | |
|    T c = a - (fa / (fb - fa)) * (b - a);
 | |
|    if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol))
 | |
|       return (a + b) / 2;
 | |
|    return c;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| T quadratic_interpolate(const T& a, const T& b, T const& d,
 | |
|                            const T& fa, const T& fb, T const& fd, 
 | |
|                            unsigned count)
 | |
| {
 | |
|    //
 | |
|    // Performs quadratic interpolation to determine the next point,
 | |
|    // takes count Newton steps to find the location of the
 | |
|    // quadratic polynomial.
 | |
|    //
 | |
|    // Point d must lie outside of the interval [a,b], it is the third
 | |
|    // best approximation to the root, after a and b.
 | |
|    //
 | |
|    // Note: this does not guarantee to find a root
 | |
|    // inside [a, b], so we fall back to a secant step should
 | |
|    // the result be out of range.
 | |
|    //
 | |
|    // Start by obtaining the coefficients of the quadratic polynomial:
 | |
|    //
 | |
|    T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>());
 | |
|    T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>());
 | |
|    A = safe_div(T(A - B), T(d - a), T(0));
 | |
| 
 | |
|    if(A == 0)
 | |
|    {
 | |
|       // failure to determine coefficients, try a secant step:
 | |
|       return secant_interpolate(a, b, fa, fb);
 | |
|    }
 | |
|    //
 | |
|    // Determine the starting point of the Newton steps:
 | |
|    //
 | |
|    T c;
 | |
|    if(boost::math::sign(A) * boost::math::sign(fa) > 0)
 | |
|    {
 | |
|       c = a;
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       c = b;
 | |
|    }
 | |
|    //
 | |
|    // Take the Newton steps:
 | |
|    //
 | |
|    for(unsigned i = 1; i <= count; ++i)
 | |
|    {
 | |
|       //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a);
 | |
|       c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a));
 | |
|    }
 | |
|    if((c <= a) || (c >= b))
 | |
|    {
 | |
|       // Oops, failure, try a secant step:
 | |
|       c = secant_interpolate(a, b, fa, fb);
 | |
|    }
 | |
|    return c;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| T cubic_interpolate(const T& a, const T& b, const T& d, 
 | |
|                     const T& e, const T& fa, const T& fb, 
 | |
|                     const T& fd, const T& fe)
 | |
| {
 | |
|    //
 | |
|    // Uses inverse cubic interpolation of f(x) at points 
 | |
|    // [a,b,d,e] to obtain an approximate root of f(x).
 | |
|    // Points d and e lie outside the interval [a,b]
 | |
|    // and are the third and forth best approximations
 | |
|    // to the root that we have found so far.
 | |
|    //
 | |
|    // Note: this does not guarantee to find a root
 | |
|    // inside [a, b], so we fall back to quadratic
 | |
|    // interpolation in case of an erroneous result.
 | |
|    //
 | |
|    BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b
 | |
|       << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb 
 | |
|       << " fd = " << fd << " fe = " << fe);
 | |
|    T q11 = (d - e) * fd / (fe - fd);
 | |
|    T q21 = (b - d) * fb / (fd - fb);
 | |
|    T q31 = (a - b) * fa / (fb - fa);
 | |
|    T d21 = (b - d) * fd / (fd - fb);
 | |
|    T d31 = (a - b) * fb / (fb - fa);
 | |
|    BOOST_MATH_INSTRUMENT_CODE(
 | |
|       "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31
 | |
|       << " d21 = " << d21 << " d31 = " << d31);
 | |
|    T q22 = (d21 - q11) * fb / (fe - fb);
 | |
|    T q32 = (d31 - q21) * fa / (fd - fa);
 | |
|    T d32 = (d31 - q21) * fd / (fd - fa);
 | |
|    T q33 = (d32 - q22) * fa / (fe - fa);
 | |
|    T c = q31 + q32 + q33 + a;
 | |
|    BOOST_MATH_INSTRUMENT_CODE(
 | |
|       "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32
 | |
|       << " q33 = " << q33 << " c = " << c);
 | |
| 
 | |
|    if((c <= a) || (c >= b))
 | |
|    {
 | |
|       // Out of bounds step, fall back to quadratic interpolation:
 | |
|       c = quadratic_interpolate(a, b, d, fa, fb, fd, 3);
 | |
|    BOOST_MATH_INSTRUMENT_CODE(
 | |
|       "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c);
 | |
|    }
 | |
| 
 | |
|    return c;
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| template <class F, class T, class Tol, class Policy>
 | |
| std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
 | |
| {
 | |
|    //
 | |
|    // Main entry point and logic for Toms Algorithm 748
 | |
|    // root finder.
 | |
|    //
 | |
|    BOOST_MATH_STD_USING  // For ADL of std math functions
 | |
| 
 | |
|    static const char* function = "boost::math::tools::toms748_solve<%1%>";
 | |
| 
 | |
|    boost::uintmax_t count = max_iter;
 | |
|    T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe;
 | |
|    static const T mu = 0.5f;
 | |
| 
 | |
|    // initialise a, b and fa, fb:
 | |
|    a = ax;
 | |
|    b = bx;
 | |
|    if(a >= b)
 | |
|       return boost::math::detail::pair_from_single(policies::raise_domain_error(
 | |
|          function, 
 | |
|          "Parameters a and b out of order: a=%1%", a, pol));
 | |
|    fa = fax;
 | |
|    fb = fbx;
 | |
| 
 | |
|    if(tol(a, b) || (fa == 0) || (fb == 0))
 | |
|    {
 | |
|       max_iter = 0;
 | |
|       if(fa == 0)
 | |
|          b = a;
 | |
|       else if(fb == 0)
 | |
|          a = b;
 | |
|       return std::make_pair(a, b);
 | |
|    }
 | |
| 
 | |
|    if(boost::math::sign(fa) * boost::math::sign(fb) > 0)
 | |
|       return boost::math::detail::pair_from_single(policies::raise_domain_error(
 | |
|          function, 
 | |
|          "Parameters a and b do not bracket the root: a=%1%", a, pol));
 | |
|    // dummy value for fd, e and fe:
 | |
|    fe = e = fd = 1e5F;
 | |
| 
 | |
|    if(fa != 0)
 | |
|    {
 | |
|       //
 | |
|       // On the first step we take a secant step:
 | |
|       //
 | |
|       c = detail::secant_interpolate(a, b, fa, fb);
 | |
|       detail::bracket(f, a, b, c, fa, fb, d, fd);
 | |
|       --count;
 | |
|       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
 | |
| 
 | |
|       if(count && (fa != 0) && !tol(a, b))
 | |
|       {
 | |
|          //
 | |
|          // On the second step we take a quadratic interpolation:
 | |
|          //
 | |
|          c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
 | |
|          e = d;
 | |
|          fe = fd;
 | |
|          detail::bracket(f, a, b, c, fa, fb, d, fd);
 | |
|          --count;
 | |
|          BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    while(count && (fa != 0) && !tol(a, b))
 | |
|    {
 | |
|       // save our brackets:
 | |
|       a0 = a;
 | |
|       b0 = b;
 | |
|       //
 | |
|       // Starting with the third step taken
 | |
|       // we can use either quadratic or cubic interpolation.
 | |
|       // Cubic interpolation requires that all four function values
 | |
|       // fa, fb, fd, and fe are distinct, should that not be the case
 | |
|       // then variable prof will get set to true, and we'll end up
 | |
|       // taking a quadratic step instead.
 | |
|       //
 | |
|       T min_diff = tools::min_value<T>() * 32;
 | |
|       bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
 | |
|       if(prof)
 | |
|       {
 | |
|          c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
 | |
|          BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
 | |
|       }
 | |
|       //
 | |
|       // re-bracket, and check for termination:
 | |
|       //
 | |
|       e = d;
 | |
|       fe = fd;
 | |
|       detail::bracket(f, a, b, c, fa, fb, d, fd);
 | |
|       if((0 == --count) || (fa == 0) || tol(a, b))
 | |
|          break;
 | |
|       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
 | |
|       //
 | |
|       // Now another interpolated step:
 | |
|       //
 | |
|       prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
 | |
|       if(prof)
 | |
|       {
 | |
|          c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3);
 | |
|          BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
 | |
|       }
 | |
|       //
 | |
|       // Bracket again, and check termination condition, update e:
 | |
|       //
 | |
|       detail::bracket(f, a, b, c, fa, fb, d, fd);
 | |
|       if((0 == --count) || (fa == 0) || tol(a, b))
 | |
|          break;
 | |
|       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
 | |
|       //
 | |
|       // Now we take a double-length secant step:
 | |
|       //
 | |
|       if(fabs(fa) < fabs(fb))
 | |
|       {
 | |
|          u = a;
 | |
|          fu = fa;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          u = b;
 | |
|          fu = fb;
 | |
|       }
 | |
|       c = u - 2 * (fu / (fb - fa)) * (b - a);
 | |
|       if(fabs(c - u) > (b - a) / 2)
 | |
|       {
 | |
|          c = a + (b - a) / 2;
 | |
|       }
 | |
|       //
 | |
|       // Bracket again, and check termination condition:
 | |
|       //
 | |
|       e = d;
 | |
|       fe = fd;
 | |
|       detail::bracket(f, a, b, c, fa, fb, d, fd);
 | |
|       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
 | |
|       BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a)));
 | |
|       if((0 == --count) || (fa == 0) || tol(a, b))
 | |
|          break;
 | |
|       //
 | |
|       // And finally... check to see if an additional bisection step is 
 | |
|       // to be taken, we do this if we're not converging fast enough:
 | |
|       //
 | |
|       if((b - a) < mu * (b0 - a0))
 | |
|          continue;
 | |
|       //
 | |
|       // bracket again on a bisection:
 | |
|       //
 | |
|       e = d;
 | |
|       fe = fd;
 | |
|       detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd);
 | |
|       --count;
 | |
|       BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!");
 | |
|       BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
 | |
|    } // while loop
 | |
| 
 | |
|    max_iter -= count;
 | |
|    if(fa == 0)
 | |
|    {
 | |
|       b = a;
 | |
|    }
 | |
|    else if(fb == 0)
 | |
|    {
 | |
|       a = b;
 | |
|    }
 | |
|    BOOST_MATH_LOG_COUNT(max_iter)
 | |
|    return std::make_pair(a, b);
 | |
| }
 | |
| 
 | |
| template <class F, class T, class Tol>
 | |
| inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter)
 | |
| {
 | |
|    return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>());
 | |
| }
 | |
| 
 | |
| template <class F, class T, class Tol, class Policy>
 | |
| inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
 | |
| {
 | |
|    max_iter -= 2;
 | |
|    std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol);
 | |
|    max_iter += 2;
 | |
|    return r;
 | |
| }
 | |
| 
 | |
| template <class F, class T, class Tol>
 | |
| inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter)
 | |
| {
 | |
|    return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>());
 | |
| }
 | |
| 
 | |
| template <class F, class T, class Tol, class Policy>
 | |
| std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>";
 | |
|    //
 | |
|    // Set up inital brackets:
 | |
|    //
 | |
|    T a = guess;
 | |
|    T b = a;
 | |
|    T fa = f(a);
 | |
|    T fb = fa;
 | |
|    //
 | |
|    // Set up invocation count:
 | |
|    //
 | |
|    boost::uintmax_t count = max_iter - 1;
 | |
| 
 | |
|    int step = 32;
 | |
| 
 | |
|    if((fa < 0) == (guess < 0 ? !rising : rising))
 | |
|    {
 | |
|       //
 | |
|       // Zero is to the right of b, so walk upwards
 | |
|       // until we find it:
 | |
|       //
 | |
|       while((boost::math::sign)(fb) == (boost::math::sign)(fa))
 | |
|       {
 | |
|          if(count == 0)
 | |
|             return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol));
 | |
|          //
 | |
|          // Heuristic: normally it's best not to increase the step sizes as we'll just end up
 | |
|          // with a really wide range to search for the root.  However, if the initial guess was *really*
 | |
|          // bad then we need to speed up the search otherwise we'll take forever if we're orders of
 | |
|          // magnitude out.  This happens most often if the guess is a small value (say 1) and the result
 | |
|          // we're looking for is close to std::numeric_limits<T>::min().
 | |
|          //
 | |
|          if((max_iter - count) % step == 0)
 | |
|          {
 | |
|             factor *= 2;
 | |
|             if(step > 1) step /= 2;
 | |
|          }
 | |
|          //
 | |
|          // Now go ahead and move our guess by "factor":
 | |
|          //
 | |
|          a = b;
 | |
|          fa = fb;
 | |
|          b *= factor;
 | |
|          fb = f(b);
 | |
|          --count;
 | |
|          BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
 | |
|       }
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       //
 | |
|       // Zero is to the left of a, so walk downwards
 | |
|       // until we find it:
 | |
|       //
 | |
|       while((boost::math::sign)(fb) == (boost::math::sign)(fa))
 | |
|       {
 | |
|          if(fabs(a) < tools::min_value<T>())
 | |
|          {
 | |
|             // Escape route just in case the answer is zero!
 | |
|             max_iter -= count;
 | |
|             max_iter += 1;
 | |
|             return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0)); 
 | |
|          }
 | |
|          if(count == 0)
 | |
|             return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol));
 | |
|          //
 | |
|          // Heuristic: normally it's best not to increase the step sizes as we'll just end up
 | |
|          // with a really wide range to search for the root.  However, if the initial guess was *really*
 | |
|          // bad then we need to speed up the search otherwise we'll take forever if we're orders of
 | |
|          // magnitude out.  This happens most often if the guess is a small value (say 1) and the result
 | |
|          // we're looking for is close to std::numeric_limits<T>::min().
 | |
|          //
 | |
|          if((max_iter - count) % step == 0)
 | |
|          {
 | |
|             factor *= 2;
 | |
|             if(step > 1) step /= 2;
 | |
|          }
 | |
|          //
 | |
|          // Now go ahead and move are guess by "factor":
 | |
|          //
 | |
|          b = a;
 | |
|          fb = fa;
 | |
|          a /= factor;
 | |
|          fa = f(a);
 | |
|          --count;
 | |
|          BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
 | |
|       }
 | |
|    }
 | |
|    max_iter -= count;
 | |
|    max_iter += 1;
 | |
|    std::pair<T, T> r = toms748_solve(
 | |
|       f, 
 | |
|       (a < 0 ? b : a), 
 | |
|       (a < 0 ? a : b), 
 | |
|       (a < 0 ? fb : fa), 
 | |
|       (a < 0 ? fa : fb), 
 | |
|       tol, 
 | |
|       count, 
 | |
|       pol);
 | |
|    max_iter += count;
 | |
|    BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
 | |
|    BOOST_MATH_LOG_COUNT(max_iter)
 | |
|    return r;
 | |
| }
 | |
| 
 | |
| template <class F, class T, class Tol>
 | |
| inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter)
 | |
| {
 | |
|    return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>());
 | |
| }
 | |
| 
 | |
| } // namespace tools
 | |
| } // namespace math
 | |
| } // namespace boost
 | |
| 
 | |
| 
 | |
| #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
 | |
| 
 | 
