130 lines
5.1 KiB
Plaintext
130 lines
5.1 KiB
Plaintext
|
// Copyright (c) 2006 Xiaogang Zhang
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_MATH_BESSEL_I0_HPP
|
||
|
#define BOOST_MATH_BESSEL_I0_HPP
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#pragma once
|
||
|
#endif
|
||
|
|
||
|
#include <boost/math/tools/rational.hpp>
|
||
|
#include <boost/math/tools/big_constant.hpp>
|
||
|
#include <boost/assert.hpp>
|
||
|
|
||
|
// Modified Bessel function of the first kind of order zero
|
||
|
// minimax rational approximations on intervals, see
|
||
|
// Blair and Edwards, Chalk River Report AECL-4928, 1974
|
||
|
|
||
|
namespace boost { namespace math { namespace detail{
|
||
|
|
||
|
template <typename T>
|
||
|
T bessel_i0(T x);
|
||
|
|
||
|
template <class T>
|
||
|
struct bessel_i0_initializer
|
||
|
{
|
||
|
struct init
|
||
|
{
|
||
|
init()
|
||
|
{
|
||
|
do_init();
|
||
|
}
|
||
|
static void do_init()
|
||
|
{
|
||
|
bessel_i0(T(1));
|
||
|
}
|
||
|
void force_instantiate()const{}
|
||
|
};
|
||
|
static const init initializer;
|
||
|
static void force_instantiate()
|
||
|
{
|
||
|
initializer.force_instantiate();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class T>
|
||
|
const typename bessel_i0_initializer<T>::init bessel_i0_initializer<T>::initializer;
|
||
|
|
||
|
template <typename T>
|
||
|
T bessel_i0(T x)
|
||
|
{
|
||
|
bessel_i0_initializer<T>::force_instantiate();
|
||
|
|
||
|
static const T P1[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375249e+15)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5050369673018427753e+14)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2940087627407749166e+13)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4925101247114157499e+11)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1912746104985237192e+10)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0313066708737980747e+08)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9545626019847898221e+05)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.4125195876041896775e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.0935347449210549190e+00)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5453977791786851041e-02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5172644670688975051e-05)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0517226450451067446e-08)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.6843448573468483278e-11)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5982226675653184646e-14)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.2487866627945699800e-18)),
|
||
|
};
|
||
|
static const T Q1[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375245e+15)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.8858692566751002988e+12)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2207067397808979846e+10)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0377081058062166144e+07)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.8527560179962773045e+03)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
|
||
|
};
|
||
|
static const T P2[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2210262233306573296e-04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3067392038106924055e-02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4700805721174453923e-01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5674518371240761397e+00)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3517945679239481621e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1611322818701131207e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.6090021968656180000e+00)),
|
||
|
};
|
||
|
static const T Q2[] = {
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5194330231005480228e-04)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2547697594819615062e-02)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1151759188741312645e+00)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3982595353892851542e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0228002066743340583e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5539563258012929600e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1446690275135491500e+01)),
|
||
|
static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
|
||
|
};
|
||
|
T value, factor, r;
|
||
|
|
||
|
BOOST_MATH_STD_USING
|
||
|
using namespace boost::math::tools;
|
||
|
|
||
|
BOOST_ASSERT(x >= 0); // negative x is handled before we get here
|
||
|
if (x == 0)
|
||
|
{
|
||
|
return static_cast<T>(1);
|
||
|
}
|
||
|
if (x <= 15) // x in (0, 15]
|
||
|
{
|
||
|
T y = x * x;
|
||
|
value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
|
||
|
}
|
||
|
else // x in (15, \infty)
|
||
|
{
|
||
|
T y = 1 / x - T(1) / 15;
|
||
|
r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
|
||
|
factor = exp(x) / sqrt(x);
|
||
|
value = factor * r;
|
||
|
}
|
||
|
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
}}} // namespaces
|
||
|
|
||
|
#endif // BOOST_MATH_BESSEL_I0_HPP
|
||
|
|