130 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright (c) 2006 Xiaogang Zhang
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_BESSEL_I0_HPP
 | |
| #define BOOST_MATH_BESSEL_I0_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/tools/rational.hpp>
 | |
| #include <boost/math/tools/big_constant.hpp>
 | |
| #include <boost/assert.hpp>
 | |
| 
 | |
| // Modified Bessel function of the first kind of order zero
 | |
| // minimax rational approximations on intervals, see
 | |
| // Blair and Edwards, Chalk River Report AECL-4928, 1974
 | |
| 
 | |
| namespace boost { namespace math { namespace detail{
 | |
| 
 | |
| template <typename T>
 | |
| T bessel_i0(T x);
 | |
| 
 | |
| template <class T>
 | |
| struct bessel_i0_initializer
 | |
| {
 | |
|    struct init
 | |
|    {
 | |
|       init()
 | |
|       {
 | |
|          do_init();
 | |
|       }
 | |
|       static void do_init()
 | |
|       {
 | |
|          bessel_i0(T(1));
 | |
|       }
 | |
|       void force_instantiate()const{}
 | |
|    };
 | |
|    static const init initializer;
 | |
|    static void force_instantiate()
 | |
|    {
 | |
|       initializer.force_instantiate();
 | |
|    }
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| const typename bessel_i0_initializer<T>::init bessel_i0_initializer<T>::initializer;
 | |
| 
 | |
| template <typename T>
 | |
| T bessel_i0(T x)
 | |
| {
 | |
|     bessel_i0_initializer<T>::force_instantiate();
 | |
| 
 | |
|     static const T P1[] = {
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375249e+15)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5050369673018427753e+14)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2940087627407749166e+13)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4925101247114157499e+11)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1912746104985237192e+10)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0313066708737980747e+08)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9545626019847898221e+05)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.4125195876041896775e+03)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.0935347449210549190e+00)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5453977791786851041e-02)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5172644670688975051e-05)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0517226450451067446e-08)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.6843448573468483278e-11)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5982226675653184646e-14)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.2487866627945699800e-18)),
 | |
|     };
 | |
|     static const T Q1[] = {
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375245e+15)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.8858692566751002988e+12)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2207067397808979846e+10)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0377081058062166144e+07)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.8527560179962773045e+03)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
 | |
|     };
 | |
|     static const T P2[] = {
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2210262233306573296e-04)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3067392038106924055e-02)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4700805721174453923e-01)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5674518371240761397e+00)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3517945679239481621e+01)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1611322818701131207e+01)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.6090021968656180000e+00)),
 | |
|     };
 | |
|     static const T Q2[] = {
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5194330231005480228e-04)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2547697594819615062e-02)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1151759188741312645e+00)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3982595353892851542e+01)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0228002066743340583e+01)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5539563258012929600e+01)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1446690275135491500e+01)),
 | |
|         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
 | |
|     };
 | |
|     T value, factor, r;
 | |
| 
 | |
|     BOOST_MATH_STD_USING
 | |
|     using namespace boost::math::tools;
 | |
| 
 | |
|     BOOST_ASSERT(x >= 0); // negative x is handled before we get here
 | |
|     if (x == 0)
 | |
|     {
 | |
|         return static_cast<T>(1);
 | |
|     }
 | |
|     if (x <= 15)                        // x in (0, 15]
 | |
|     {
 | |
|         T y = x * x;
 | |
|         value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
 | |
|     }
 | |
|     else                                // x in (15, \infty)
 | |
|     {
 | |
|         T y = 1 / x - T(1) / 15;
 | |
|         r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
 | |
|         factor = exp(x) / sqrt(x);
 | |
|         value = factor * r;
 | |
|     }
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| }}} // namespaces
 | |
| 
 | |
| #endif // BOOST_MATH_BESSEL_I0_HPP
 | |
| 
 | 
