134 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			134 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright (c) 2006 Xiaogang Zhang | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_BESSEL_JN_HPP | ||
|  | #define BOOST_MATH_BESSEL_JN_HPP | ||
|  | 
 | ||
|  | #ifdef _MSC_VER | ||
|  | #pragma once | ||
|  | #endif | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/detail/bessel_j0.hpp> | ||
|  | #include <boost/math/special_functions/detail/bessel_j1.hpp> | ||
|  | #include <boost/math/special_functions/detail/bessel_jy.hpp> | ||
|  | #include <boost/math/special_functions/detail/bessel_jy_asym.hpp> | ||
|  | #include <boost/math/special_functions/detail/bessel_jy_series.hpp> | ||
|  | 
 | ||
|  | // Bessel function of the first kind of integer order | ||
|  | // J_n(z) is the minimal solution | ||
|  | // n < abs(z), forward recurrence stable and usable | ||
|  | // n >= abs(z), forward recurrence unstable, use Miller's algorithm | ||
|  | 
 | ||
|  | namespace boost { namespace math { namespace detail{ | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T bessel_jn(int n, T x, const Policy& pol) | ||
|  | { | ||
|  |     T value(0), factor, current, prev, next; | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING | ||
|  | 
 | ||
|  |     // | ||
|  |     // Reflection has to come first: | ||
|  |     // | ||
|  |     if (n < 0) | ||
|  |     { | ||
|  |         factor = static_cast<T>((n & 0x1) ? -1 : 1);  // J_{-n}(z) = (-1)^n J_n(z) | ||
|  |         n = -n; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         factor = 1; | ||
|  |     } | ||
|  |     if(x < 0) | ||
|  |     { | ||
|  |         factor *= (n & 0x1) ? -1 : 1;  // J_{n}(-z) = (-1)^n J_n(z) | ||
|  |         x = -x; | ||
|  |     } | ||
|  |     // | ||
|  |     // Special cases: | ||
|  |     // | ||
|  |     if(asymptotic_bessel_large_x_limit(T(n), x)) | ||
|  |        return factor * asymptotic_bessel_j_large_x_2<T>(T(n), x); | ||
|  |     if (n == 0) | ||
|  |     { | ||
|  |         return factor * bessel_j0(x); | ||
|  |     } | ||
|  |     if (n == 1) | ||
|  |     { | ||
|  |         return factor * bessel_j1(x); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (x == 0)                             // n >= 2 | ||
|  |     { | ||
|  |         return static_cast<T>(0); | ||
|  |     } | ||
|  | 
 | ||
|  |     BOOST_ASSERT(n > 1); | ||
|  |     T scale = 1; | ||
|  |     if (n < abs(x))                         // forward recurrence | ||
|  |     { | ||
|  |         prev = bessel_j0(x); | ||
|  |         current = bessel_j1(x); | ||
|  |         policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol); | ||
|  |         for (int k = 1; k < n; k++) | ||
|  |         { | ||
|  |             T fact = 2 * k / x; | ||
|  |             // | ||
|  |             // rescale if we would overflow or underflow: | ||
|  |             // | ||
|  |             if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current))) | ||
|  |             { | ||
|  |                scale /= current; | ||
|  |                prev /= current; | ||
|  |                current = 1; | ||
|  |             } | ||
|  |             value = fact * current - prev; | ||
|  |             prev = current; | ||
|  |             current = value; | ||
|  |         } | ||
|  |     } | ||
|  |     else if((x < 1) || (n > x * x / 4) || (x < 5)) | ||
|  |     { | ||
|  |        return factor * bessel_j_small_z_series(T(n), x, pol); | ||
|  |     } | ||
|  |     else                                    // backward recurrence | ||
|  |     { | ||
|  |         T fn; int s;                        // fn = J_(n+1) / J_n | ||
|  |         // |x| <= n, fast convergence for continued fraction CF1 | ||
|  |         boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol); | ||
|  |         prev = fn; | ||
|  |         current = 1; | ||
|  |         // Check recursion won't go on too far: | ||
|  |         policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol); | ||
|  |         for (int k = n; k > 0; k--) | ||
|  |         { | ||
|  |             T fact = 2 * k / x; | ||
|  |             if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current))) | ||
|  |             { | ||
|  |                prev /= current; | ||
|  |                scale /= current; | ||
|  |                current = 1; | ||
|  |             } | ||
|  |             next = fact * current - prev; | ||
|  |             prev = current; | ||
|  |             current = next; | ||
|  |         } | ||
|  |         value = bessel_j0(x) / current;       // normalization | ||
|  |         scale = 1 / scale; | ||
|  |     } | ||
|  |     value *= factor; | ||
|  | 
 | ||
|  |     if(tools::max_value<T>() * scale < fabs(value)) | ||
|  |        return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)", 0, pol); | ||
|  | 
 | ||
|  |     return value / scale; | ||
|  | } | ||
|  | 
 | ||
|  | }}} // namespaces | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_BESSEL_JN_HPP | ||
|  | 
 |