134 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright (c) 2006 Xiaogang Zhang
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_BESSEL_JN_HPP
 | |
| #define BOOST_MATH_BESSEL_JN_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/special_functions/detail/bessel_j0.hpp>
 | |
| #include <boost/math/special_functions/detail/bessel_j1.hpp>
 | |
| #include <boost/math/special_functions/detail/bessel_jy.hpp>
 | |
| #include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
 | |
| #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
 | |
| 
 | |
| // Bessel function of the first kind of integer order
 | |
| // J_n(z) is the minimal solution
 | |
| // n < abs(z), forward recurrence stable and usable
 | |
| // n >= abs(z), forward recurrence unstable, use Miller's algorithm
 | |
| 
 | |
| namespace boost { namespace math { namespace detail{
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| T bessel_jn(int n, T x, const Policy& pol)
 | |
| {
 | |
|     T value(0), factor, current, prev, next;
 | |
| 
 | |
|     BOOST_MATH_STD_USING
 | |
| 
 | |
|     //
 | |
|     // Reflection has to come first:
 | |
|     //
 | |
|     if (n < 0)
 | |
|     {
 | |
|         factor = static_cast<T>((n & 0x1) ? -1 : 1);  // J_{-n}(z) = (-1)^n J_n(z)
 | |
|         n = -n;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         factor = 1;
 | |
|     }
 | |
|     if(x < 0)
 | |
|     {
 | |
|         factor *= (n & 0x1) ? -1 : 1;  // J_{n}(-z) = (-1)^n J_n(z)
 | |
|         x = -x;
 | |
|     }
 | |
|     //
 | |
|     // Special cases:
 | |
|     //
 | |
|     if(asymptotic_bessel_large_x_limit(T(n), x))
 | |
|        return factor * asymptotic_bessel_j_large_x_2<T>(T(n), x);
 | |
|     if (n == 0)
 | |
|     {
 | |
|         return factor * bessel_j0(x);
 | |
|     }
 | |
|     if (n == 1)
 | |
|     {
 | |
|         return factor * bessel_j1(x);
 | |
|     }
 | |
| 
 | |
|     if (x == 0)                             // n >= 2
 | |
|     {
 | |
|         return static_cast<T>(0);
 | |
|     }
 | |
| 
 | |
|     BOOST_ASSERT(n > 1);
 | |
|     T scale = 1;
 | |
|     if (n < abs(x))                         // forward recurrence
 | |
|     {
 | |
|         prev = bessel_j0(x);
 | |
|         current = bessel_j1(x);
 | |
|         policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
 | |
|         for (int k = 1; k < n; k++)
 | |
|         {
 | |
|             T fact = 2 * k / x;
 | |
|             //
 | |
|             // rescale if we would overflow or underflow:
 | |
|             //
 | |
|             if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
 | |
|             {
 | |
|                scale /= current;
 | |
|                prev /= current;
 | |
|                current = 1;
 | |
|             }
 | |
|             value = fact * current - prev;
 | |
|             prev = current;
 | |
|             current = value;
 | |
|         }
 | |
|     }
 | |
|     else if((x < 1) || (n > x * x / 4) || (x < 5))
 | |
|     {
 | |
|        return factor * bessel_j_small_z_series(T(n), x, pol);
 | |
|     }
 | |
|     else                                    // backward recurrence
 | |
|     {
 | |
|         T fn; int s;                        // fn = J_(n+1) / J_n
 | |
|         // |x| <= n, fast convergence for continued fraction CF1
 | |
|         boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol);
 | |
|         prev = fn;
 | |
|         current = 1;
 | |
|         // Check recursion won't go on too far:
 | |
|         policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
 | |
|         for (int k = n; k > 0; k--)
 | |
|         {
 | |
|             T fact = 2 * k / x;
 | |
|             if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
 | |
|             {
 | |
|                prev /= current;
 | |
|                scale /= current;
 | |
|                current = 1;
 | |
|             }
 | |
|             next = fact * current - prev;
 | |
|             prev = current;
 | |
|             current = next;
 | |
|         }
 | |
|         value = bessel_j0(x) / current;       // normalization
 | |
|         scale = 1 / scale;
 | |
|     }
 | |
|     value *= factor;
 | |
| 
 | |
|     if(tools::max_value<T>() * scale < fabs(value))
 | |
|        return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)", 0, pol);
 | |
| 
 | |
|     return value / scale;
 | |
| }
 | |
| 
 | |
| }}} // namespaces
 | |
| 
 | |
| #endif // BOOST_MATH_BESSEL_JN_HPP
 | |
| 
 | 
