134 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			134 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								//  Copyright (c) 2006 Xiaogang Zhang
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_BESSEL_JN_HPP
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_BESSEL_JN_HPP
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#pragma once
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/detail/bessel_j0.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/detail/bessel_j1.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/detail/bessel_jy.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/detail/bessel_jy_series.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Bessel function of the first kind of integer order
							 | 
						||
| 
								 | 
							
								// J_n(z) is the minimal solution
							 | 
						||
| 
								 | 
							
								// n < abs(z), forward recurrence stable and usable
							 | 
						||
| 
								 | 
							
								// n >= abs(z), forward recurrence unstable, use Miller's algorithm
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace boost { namespace math { namespace detail{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename T, typename Policy>
							 | 
						||
| 
								 | 
							
								T bessel_jn(int n, T x, const Policy& pol)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    T value(0), factor, current, prev, next;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    BOOST_MATH_STD_USING
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    //
							 | 
						||
| 
								 | 
							
								    // Reflection has to come first:
							 | 
						||
| 
								 | 
							
								    //
							 | 
						||
| 
								 | 
							
								    if (n < 0)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        factor = static_cast<T>((n & 0x1) ? -1 : 1);  // J_{-n}(z) = (-1)^n J_n(z)
							 | 
						||
| 
								 | 
							
								        n = -n;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        factor = 1;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if(x < 0)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        factor *= (n & 0x1) ? -1 : 1;  // J_{n}(-z) = (-1)^n J_n(z)
							 | 
						||
| 
								 | 
							
								        x = -x;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    //
							 | 
						||
| 
								 | 
							
								    // Special cases:
							 | 
						||
| 
								 | 
							
								    //
							 | 
						||
| 
								 | 
							
								    if(asymptotic_bessel_large_x_limit(T(n), x))
							 | 
						||
| 
								 | 
							
								       return factor * asymptotic_bessel_j_large_x_2<T>(T(n), x);
							 | 
						||
| 
								 | 
							
								    if (n == 0)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return factor * bessel_j0(x);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if (n == 1)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return factor * bessel_j1(x);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (x == 0)                             // n >= 2
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        return static_cast<T>(0);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    BOOST_ASSERT(n > 1);
							 | 
						||
| 
								 | 
							
								    T scale = 1;
							 | 
						||
| 
								 | 
							
								    if (n < abs(x))                         // forward recurrence
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        prev = bessel_j0(x);
							 | 
						||
| 
								 | 
							
								        current = bessel_j1(x);
							 | 
						||
| 
								 | 
							
								        policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
							 | 
						||
| 
								 | 
							
								        for (int k = 1; k < n; k++)
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            T fact = 2 * k / x;
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            // rescale if we would overflow or underflow:
							 | 
						||
| 
								 | 
							
								            //
							 | 
						||
| 
								 | 
							
								            if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               scale /= current;
							 | 
						||
| 
								 | 
							
								               prev /= current;
							 | 
						||
| 
								 | 
							
								               current = 1;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            value = fact * current - prev;
							 | 
						||
| 
								 | 
							
								            prev = current;
							 | 
						||
| 
								 | 
							
								            current = value;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else if((x < 1) || (n > x * x / 4) || (x < 5))
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								       return factor * bessel_j_small_z_series(T(n), x, pol);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else                                    // backward recurrence
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        T fn; int s;                        // fn = J_(n+1) / J_n
							 | 
						||
| 
								 | 
							
								        // |x| <= n, fast convergence for continued fraction CF1
							 | 
						||
| 
								 | 
							
								        boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol);
							 | 
						||
| 
								 | 
							
								        prev = fn;
							 | 
						||
| 
								 | 
							
								        current = 1;
							 | 
						||
| 
								 | 
							
								        // Check recursion won't go on too far:
							 | 
						||
| 
								 | 
							
								        policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
							 | 
						||
| 
								 | 
							
								        for (int k = n; k > 0; k--)
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            T fact = 2 * k / x;
							 | 
						||
| 
								 | 
							
								            if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               prev /= current;
							 | 
						||
| 
								 | 
							
								               scale /= current;
							 | 
						||
| 
								 | 
							
								               current = 1;
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            next = fact * current - prev;
							 | 
						||
| 
								 | 
							
								            prev = current;
							 | 
						||
| 
								 | 
							
								            current = next;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        value = bessel_j0(x) / current;       // normalization
							 | 
						||
| 
								 | 
							
								        scale = 1 / scale;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    value *= factor;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if(tools::max_value<T>() * scale < fabs(value))
							 | 
						||
| 
								 | 
							
								       return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)", 0, pol);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return value / scale;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}}} // namespaces
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif // BOOST_MATH_BESSEL_JN_HPP
							 | 
						||
| 
								 | 
							
								
							 |