134 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//  Copyright (c) 2006 Xiaogang Zhang
 | 
						|
//  Use, modification and distribution are subject to the
 | 
						|
//  Boost Software License, Version 1.0. (See accompanying file
 | 
						|
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#ifndef BOOST_MATH_BESSEL_JN_HPP
 | 
						|
#define BOOST_MATH_BESSEL_JN_HPP
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#pragma once
 | 
						|
#endif
 | 
						|
 | 
						|
#include <boost/math/special_functions/detail/bessel_j0.hpp>
 | 
						|
#include <boost/math/special_functions/detail/bessel_j1.hpp>
 | 
						|
#include <boost/math/special_functions/detail/bessel_jy.hpp>
 | 
						|
#include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
 | 
						|
#include <boost/math/special_functions/detail/bessel_jy_series.hpp>
 | 
						|
 | 
						|
// Bessel function of the first kind of integer order
 | 
						|
// J_n(z) is the minimal solution
 | 
						|
// n < abs(z), forward recurrence stable and usable
 | 
						|
// n >= abs(z), forward recurrence unstable, use Miller's algorithm
 | 
						|
 | 
						|
namespace boost { namespace math { namespace detail{
 | 
						|
 | 
						|
template <typename T, typename Policy>
 | 
						|
T bessel_jn(int n, T x, const Policy& pol)
 | 
						|
{
 | 
						|
    T value(0), factor, current, prev, next;
 | 
						|
 | 
						|
    BOOST_MATH_STD_USING
 | 
						|
 | 
						|
    //
 | 
						|
    // Reflection has to come first:
 | 
						|
    //
 | 
						|
    if (n < 0)
 | 
						|
    {
 | 
						|
        factor = static_cast<T>((n & 0x1) ? -1 : 1);  // J_{-n}(z) = (-1)^n J_n(z)
 | 
						|
        n = -n;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        factor = 1;
 | 
						|
    }
 | 
						|
    if(x < 0)
 | 
						|
    {
 | 
						|
        factor *= (n & 0x1) ? -1 : 1;  // J_{n}(-z) = (-1)^n J_n(z)
 | 
						|
        x = -x;
 | 
						|
    }
 | 
						|
    //
 | 
						|
    // Special cases:
 | 
						|
    //
 | 
						|
    if(asymptotic_bessel_large_x_limit(T(n), x))
 | 
						|
       return factor * asymptotic_bessel_j_large_x_2<T>(T(n), x);
 | 
						|
    if (n == 0)
 | 
						|
    {
 | 
						|
        return factor * bessel_j0(x);
 | 
						|
    }
 | 
						|
    if (n == 1)
 | 
						|
    {
 | 
						|
        return factor * bessel_j1(x);
 | 
						|
    }
 | 
						|
 | 
						|
    if (x == 0)                             // n >= 2
 | 
						|
    {
 | 
						|
        return static_cast<T>(0);
 | 
						|
    }
 | 
						|
 | 
						|
    BOOST_ASSERT(n > 1);
 | 
						|
    T scale = 1;
 | 
						|
    if (n < abs(x))                         // forward recurrence
 | 
						|
    {
 | 
						|
        prev = bessel_j0(x);
 | 
						|
        current = bessel_j1(x);
 | 
						|
        policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
 | 
						|
        for (int k = 1; k < n; k++)
 | 
						|
        {
 | 
						|
            T fact = 2 * k / x;
 | 
						|
            //
 | 
						|
            // rescale if we would overflow or underflow:
 | 
						|
            //
 | 
						|
            if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
 | 
						|
            {
 | 
						|
               scale /= current;
 | 
						|
               prev /= current;
 | 
						|
               current = 1;
 | 
						|
            }
 | 
						|
            value = fact * current - prev;
 | 
						|
            prev = current;
 | 
						|
            current = value;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if((x < 1) || (n > x * x / 4) || (x < 5))
 | 
						|
    {
 | 
						|
       return factor * bessel_j_small_z_series(T(n), x, pol);
 | 
						|
    }
 | 
						|
    else                                    // backward recurrence
 | 
						|
    {
 | 
						|
        T fn; int s;                        // fn = J_(n+1) / J_n
 | 
						|
        // |x| <= n, fast convergence for continued fraction CF1
 | 
						|
        boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol);
 | 
						|
        prev = fn;
 | 
						|
        current = 1;
 | 
						|
        // Check recursion won't go on too far:
 | 
						|
        policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
 | 
						|
        for (int k = n; k > 0; k--)
 | 
						|
        {
 | 
						|
            T fact = 2 * k / x;
 | 
						|
            if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
 | 
						|
            {
 | 
						|
               prev /= current;
 | 
						|
               scale /= current;
 | 
						|
               current = 1;
 | 
						|
            }
 | 
						|
            next = fact * current - prev;
 | 
						|
            prev = current;
 | 
						|
            current = next;
 | 
						|
        }
 | 
						|
        value = bessel_j0(x) / current;       // normalization
 | 
						|
        scale = 1 / scale;
 | 
						|
    }
 | 
						|
    value *= factor;
 | 
						|
 | 
						|
    if(tools::max_value<T>() * scale < fabs(value))
 | 
						|
       return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)", 0, pol);
 | 
						|
 | 
						|
    return value / scale;
 | 
						|
}
 | 
						|
 | 
						|
}}} // namespaces
 | 
						|
 | 
						|
#endif // BOOST_MATH_BESSEL_JN_HPP
 | 
						|
 |