138 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			138 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | /////////////////////////////////////////////////////////////// | ||
|  | //  Copyright 2013 John Maddock. Distributed under the Boost | ||
|  | //  Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_ | ||
|  | 
 | ||
|  | #ifndef BOOST_MULTIPRECISION_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP | ||
|  | #define BOOST_MULTIPRECISION_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP | ||
|  | 
 | ||
|  | namespace boost{ namespace multiprecision{ namespace backends{ | ||
|  | 
 | ||
|  | template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE> | ||
|  | void eval_exp_taylor(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg) | ||
|  | { | ||
|  |    static const int bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count; | ||
|  |    // | ||
|  |    // Taylor series for small argument, note returns exp(x) - 1: | ||
|  |    // | ||
|  |    res = limb_type(0); | ||
|  |    cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> num(arg), denom, t; | ||
|  |    denom = limb_type(1); | ||
|  |    eval_add(res, num); | ||
|  | 
 | ||
|  |    for(unsigned k = 2; ; ++k) | ||
|  |    { | ||
|  |       eval_multiply(denom, k); | ||
|  |       eval_multiply(num, arg); | ||
|  |       eval_divide(t, num, denom); | ||
|  |       eval_add(res, t); | ||
|  |       if(eval_is_zero(t) || (res.exponent() - bits > t.exponent())) | ||
|  |          break; | ||
|  |    } | ||
|  | } | ||
|  | 
 | ||
|  | template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE> | ||
|  | void eval_exp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg) | ||
|  | { | ||
|  |    // | ||
|  |    // This is based on MPFR's method, let: | ||
|  |    // | ||
|  |    // n = floor(x / ln(2)) | ||
|  |    // | ||
|  |    // Then: | ||
|  |    // | ||
|  |    // r = x - n ln(2) : 0 <= r < ln(2) | ||
|  |    // | ||
|  |    // We can reduce r further by dividing by 2^k, with k ~ sqrt(n), | ||
|  |    // so if: | ||
|  |    // | ||
|  |    // e0 = exp(r / 2^k) - 1 | ||
|  |    // | ||
|  |    // With e0 evaluated by taylor series for small arguments, then: | ||
|  |    // | ||
|  |    // exp(x) = 2^n (1 + e0)^2^k | ||
|  |    // | ||
|  |    // Note that to preserve precision we actually square (1 + e0) k times, calculating | ||
|  |    // the result less one each time, i.e. | ||
|  |    // | ||
|  |    // (1 + e0)^2 - 1 = e0^2 + 2e0 | ||
|  |    // | ||
|  |    // Then add the final 1 at the end, given that e0 is small, this effectively wipes | ||
|  |    // out the error in the last step. | ||
|  |    // | ||
|  |    using default_ops::eval_multiply; | ||
|  |    using default_ops::eval_subtract; | ||
|  |    using default_ops::eval_add; | ||
|  |    using default_ops::eval_convert_to; | ||
|  | 
 | ||
|  |    int type = eval_fpclassify(arg); | ||
|  |    bool isneg = eval_get_sign(arg) < 0; | ||
|  |    if(type == (int)FP_NAN) | ||
|  |    { | ||
|  |       res = arg; | ||
|  |       return; | ||
|  |    } | ||
|  |    else if(type == (int)FP_INFINITE) | ||
|  |    { | ||
|  |       res = arg; | ||
|  |       if(isneg) | ||
|  |          res = limb_type(0u); | ||
|  |       else  | ||
|  |          res = arg; | ||
|  |       return; | ||
|  |    } | ||
|  |    else if(type == (int)FP_ZERO) | ||
|  |    { | ||
|  |       res = limb_type(1); | ||
|  |       return; | ||
|  |    } | ||
|  |    cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> t, n; | ||
|  |    if(isneg) | ||
|  |    { | ||
|  |       t = arg; | ||
|  |       t.negate(); | ||
|  |       eval_exp(res, t); | ||
|  |       t.swap(res); | ||
|  |       res = limb_type(1); | ||
|  |       eval_divide(res, t); | ||
|  |       return; | ||
|  |    } | ||
|  | 
 | ||
|  |    eval_divide(n, arg, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()); | ||
|  |    eval_floor(n, n); | ||
|  |    eval_multiply(t, n, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()); | ||
|  |    eval_subtract(t, arg); | ||
|  |    t.negate(); | ||
|  |    if(eval_get_sign(t) < 0) | ||
|  |    { | ||
|  |       // There are some very rare cases where arg/ln2 is an integer, and the subsequent multiply | ||
|  |       // rounds up, in that situation t ends up negative at this point which breaks our invariants below: | ||
|  |       t = limb_type(0); | ||
|  |    } | ||
|  |    BOOST_ASSERT(t.compare(default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()) < 0); | ||
|  | 
 | ||
|  |    Exponent k, nn; | ||
|  |    eval_convert_to(&nn, n); | ||
|  |    k = nn ? Exponent(1) << (msb(nn) / 2) : 0; | ||
|  |    eval_ldexp(t, t, -k); | ||
|  | 
 | ||
|  |    eval_exp_taylor(res, t); | ||
|  |    // | ||
|  |    // Square 1 + res k times: | ||
|  |    // | ||
|  |    for(int s = 0; s < k; ++s) | ||
|  |    { | ||
|  |       t.swap(res); | ||
|  |       eval_multiply(res, t, t); | ||
|  |       eval_ldexp(t, t, 1); | ||
|  |       eval_add(res, t); | ||
|  |    } | ||
|  |    eval_add(res, limb_type(1)); | ||
|  |    eval_ldexp(res, res, nn); | ||
|  | } | ||
|  | 
 | ||
|  | }}} // namespaces | ||
|  | 
 | ||
|  | #endif | ||
|  | 
 |