138 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////
 | |
| //  Copyright 2013 John Maddock. Distributed under the Boost
 | |
| //  Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_
 | |
| 
 | |
| #ifndef BOOST_MULTIPRECISION_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
 | |
| #define BOOST_MULTIPRECISION_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
 | |
| 
 | |
| namespace boost{ namespace multiprecision{ namespace backends{
 | |
| 
 | |
| template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
 | |
| void eval_exp_taylor(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
 | |
| {
 | |
|    static const int bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count;
 | |
|    //
 | |
|    // Taylor series for small argument, note returns exp(x) - 1:
 | |
|    //
 | |
|    res = limb_type(0);
 | |
|    cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> num(arg), denom, t;
 | |
|    denom = limb_type(1);
 | |
|    eval_add(res, num);
 | |
| 
 | |
|    for(unsigned k = 2; ; ++k)
 | |
|    {
 | |
|       eval_multiply(denom, k);
 | |
|       eval_multiply(num, arg);
 | |
|       eval_divide(t, num, denom);
 | |
|       eval_add(res, t);
 | |
|       if(eval_is_zero(t) || (res.exponent() - bits > t.exponent()))
 | |
|          break;
 | |
|    }
 | |
| }
 | |
| 
 | |
| template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
 | |
| void eval_exp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
 | |
| {
 | |
|    //
 | |
|    // This is based on MPFR's method, let:
 | |
|    //
 | |
|    // n = floor(x / ln(2))
 | |
|    //
 | |
|    // Then:
 | |
|    //
 | |
|    // r = x - n ln(2) : 0 <= r < ln(2)
 | |
|    //
 | |
|    // We can reduce r further by dividing by 2^k, with k ~ sqrt(n),
 | |
|    // so if:
 | |
|    //
 | |
|    // e0 = exp(r / 2^k) - 1
 | |
|    //
 | |
|    // With e0 evaluated by taylor series for small arguments, then:
 | |
|    //
 | |
|    // exp(x) = 2^n (1 + e0)^2^k
 | |
|    //
 | |
|    // Note that to preserve precision we actually square (1 + e0) k times, calculating
 | |
|    // the result less one each time, i.e.
 | |
|    //
 | |
|    // (1 + e0)^2 - 1 = e0^2 + 2e0
 | |
|    //
 | |
|    // Then add the final 1 at the end, given that e0 is small, this effectively wipes
 | |
|    // out the error in the last step.
 | |
|    //
 | |
|    using default_ops::eval_multiply;
 | |
|    using default_ops::eval_subtract;
 | |
|    using default_ops::eval_add;
 | |
|    using default_ops::eval_convert_to;
 | |
| 
 | |
|    int type = eval_fpclassify(arg);
 | |
|    bool isneg = eval_get_sign(arg) < 0;
 | |
|    if(type == (int)FP_NAN)
 | |
|    {
 | |
|       res = arg;
 | |
|       return;
 | |
|    }
 | |
|    else if(type == (int)FP_INFINITE)
 | |
|    {
 | |
|       res = arg;
 | |
|       if(isneg)
 | |
|          res = limb_type(0u);
 | |
|       else 
 | |
|          res = arg;
 | |
|       return;
 | |
|    }
 | |
|    else if(type == (int)FP_ZERO)
 | |
|    {
 | |
|       res = limb_type(1);
 | |
|       return;
 | |
|    }
 | |
|    cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> t, n;
 | |
|    if(isneg)
 | |
|    {
 | |
|       t = arg;
 | |
|       t.negate();
 | |
|       eval_exp(res, t);
 | |
|       t.swap(res);
 | |
|       res = limb_type(1);
 | |
|       eval_divide(res, t);
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    eval_divide(n, arg, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
 | |
|    eval_floor(n, n);
 | |
|    eval_multiply(t, n, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
 | |
|    eval_subtract(t, arg);
 | |
|    t.negate();
 | |
|    if(eval_get_sign(t) < 0)
 | |
|    {
 | |
|       // There are some very rare cases where arg/ln2 is an integer, and the subsequent multiply
 | |
|       // rounds up, in that situation t ends up negative at this point which breaks our invariants below:
 | |
|       t = limb_type(0);
 | |
|    }
 | |
|    BOOST_ASSERT(t.compare(default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()) < 0);
 | |
| 
 | |
|    Exponent k, nn;
 | |
|    eval_convert_to(&nn, n);
 | |
|    k = nn ? Exponent(1) << (msb(nn) / 2) : 0;
 | |
|    eval_ldexp(t, t, -k);
 | |
| 
 | |
|    eval_exp_taylor(res, t);
 | |
|    //
 | |
|    // Square 1 + res k times:
 | |
|    //
 | |
|    for(int s = 0; s < k; ++s)
 | |
|    {
 | |
|       t.swap(res);
 | |
|       eval_multiply(res, t, t);
 | |
|       eval_ldexp(t, t, 1);
 | |
|       eval_add(res, t);
 | |
|    }
 | |
|    eval_add(res, limb_type(1));
 | |
|    eval_ldexp(res, res, nn);
 | |
| }
 | |
| 
 | |
| }}} // namespaces
 | |
| 
 | |
| #endif
 | |
| 
 | 
