js8call/.svn/pristine/d6/d6c3a1c383025b757d1834e8ebf5e1441d4cf459.svn-base
2018-02-08 21:28:33 -05:00

934 lines
32 KiB
Plaintext

/*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* Copyright (c) 2009 Helge Bahmann
* Copyright (c) 2012 Tim Blechmann
* Copyright (c) 2014 Andrey Semashev
*/
/*!
* \file atomic/detail/ops_msvc_x86.hpp
*
* This header contains implementation of the \c operations template.
*/
#ifndef BOOST_ATOMIC_DETAIL_OPS_MSVC_X86_HPP_INCLUDED_
#define BOOST_ATOMIC_DETAIL_OPS_MSVC_X86_HPP_INCLUDED_
#include <boost/memory_order.hpp>
#include <boost/type_traits/make_signed.hpp>
#include <boost/atomic/detail/config.hpp>
#include <boost/atomic/detail/interlocked.hpp>
#include <boost/atomic/detail/storage_type.hpp>
#include <boost/atomic/detail/operations_fwd.hpp>
#include <boost/atomic/capabilities.hpp>
#if defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG8B) || defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG16B)
#include <boost/cstdint.hpp>
#include <boost/atomic/detail/ops_cas_based.hpp>
#endif
#include <boost/atomic/detail/ops_msvc_common.hpp>
#if !defined(_M_IX86) && !(defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE8) && defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE16))
#include <boost/atomic/detail/ops_extending_cas_based.hpp>
#endif
#ifdef BOOST_HAS_PRAGMA_ONCE
#pragma once
#endif
#if defined(BOOST_MSVC)
#pragma warning(push)
// frame pointer register 'ebx' modified by inline assembly code. See the note below.
#pragma warning(disable: 4731)
#endif
#if defined(BOOST_ATOMIC_DETAIL_X86_HAS_MFENCE)
extern "C" void _mm_mfence(void);
#if defined(BOOST_MSVC)
#pragma intrinsic(_mm_mfence)
#endif
#endif
namespace boost {
namespace atomics {
namespace detail {
/*
* Implementation note for asm blocks.
*
* http://msdn.microsoft.com/en-us/data/k1a8ss06%28v=vs.105%29
*
* Some SSE types require eight-byte stack alignment, forcing the compiler to emit dynamic stack-alignment code.
* To be able to access both the local variables and the function parameters after the alignment, the compiler
* maintains two frame pointers. If the compiler performs frame pointer omission (FPO), it will use EBP and ESP.
* If the compiler does not perform FPO, it will use EBX and EBP. To ensure code runs correctly, do not modify EBX
* in asm code if the function requires dynamic stack alignment as it could modify the frame pointer.
* Either move the eight-byte aligned types out of the function, or avoid using EBX.
*
* Since we have no way of knowing that the compiler uses FPO, we have to always save and restore ebx
* whenever we have to clobber it. Additionally, we disable warning C4731 above so that the compiler
* doesn't spam about ebx use.
*/
struct msvc_x86_operations_base
{
static BOOST_CONSTEXPR_OR_CONST bool is_always_lock_free = true;
static BOOST_FORCEINLINE void hardware_full_fence() BOOST_NOEXCEPT
{
#if defined(BOOST_ATOMIC_DETAIL_X86_HAS_MFENCE)
_mm_mfence();
#else
long tmp;
BOOST_ATOMIC_INTERLOCKED_EXCHANGE(&tmp, 0);
#endif
}
static BOOST_FORCEINLINE void fence_before(memory_order) BOOST_NOEXCEPT
{
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
}
static BOOST_FORCEINLINE void fence_after(memory_order) BOOST_NOEXCEPT
{
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
}
static BOOST_FORCEINLINE void fence_after_load(memory_order) BOOST_NOEXCEPT
{
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
// On x86 and x86_64 there is no need for a hardware barrier,
// even if seq_cst memory order is requested, because all
// seq_cst writes are implemented with lock-prefixed operations
// or xchg which has implied lock prefix. Therefore normal loads
// are already ordered with seq_cst stores on these architectures.
}
};
template< typename T, typename Derived >
struct msvc_x86_operations :
public msvc_x86_operations_base
{
typedef T storage_type;
static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
if (order != memory_order_seq_cst)
{
fence_before(order);
storage = v;
fence_after(order);
}
else
{
Derived::exchange(storage, v, order);
}
}
static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order order) BOOST_NOEXCEPT
{
storage_type v = storage;
fence_after_load(order);
return v;
}
static BOOST_FORCEINLINE storage_type fetch_sub(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
typedef typename make_signed< storage_type >::type signed_storage_type;
return Derived::fetch_add(storage, static_cast< storage_type >(-static_cast< signed_storage_type >(v)), order);
}
static BOOST_FORCEINLINE bool compare_exchange_weak(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT
{
return Derived::compare_exchange_strong(storage, expected, desired, success_order, failure_order);
}
static BOOST_FORCEINLINE bool test_and_set(storage_type volatile& storage, memory_order order) BOOST_NOEXCEPT
{
return !!Derived::exchange(storage, (storage_type)1, order);
}
static BOOST_FORCEINLINE void clear(storage_type volatile& storage, memory_order order) BOOST_NOEXCEPT
{
store(storage, (storage_type)0, order);
}
static BOOST_FORCEINLINE bool is_lock_free(storage_type const volatile&) BOOST_NOEXCEPT
{
return true;
}
};
template< bool Signed >
struct operations< 4u, Signed > :
public msvc_x86_operations< typename make_storage_type< 4u, Signed >::type, operations< 4u, Signed > >
{
typedef msvc_x86_operations< typename make_storage_type< 4u, Signed >::type, operations< 4u, Signed > > base_type;
typedef typename base_type::storage_type storage_type;
typedef typename make_storage_type< 4u, Signed >::aligned aligned_storage_type;
static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE_ADD(&storage, v));
}
static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE(&storage, v));
}
static BOOST_FORCEINLINE bool compare_exchange_strong(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT
{
storage_type previous = expected;
storage_type old_val = static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE(&storage, desired, previous));
expected = old_val;
return (previous == old_val);
}
#if defined(BOOST_ATOMIC_INTERLOCKED_AND)
static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_AND(&storage, v));
}
#else
static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
storage_type res = storage;
while (!compare_exchange_strong(storage, res, res & v, order, memory_order_relaxed)) {}
return res;
}
#endif
#if defined(BOOST_ATOMIC_INTERLOCKED_OR)
static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_OR(&storage, v));
}
#else
static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
storage_type res = storage;
while (!compare_exchange_strong(storage, res, res | v, order, memory_order_relaxed)) {}
return res;
}
#endif
#if defined(BOOST_ATOMIC_INTERLOCKED_XOR)
static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_XOR(&storage, v));
}
#else
static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
storage_type res = storage;
while (!compare_exchange_strong(storage, res, res ^ v, order, memory_order_relaxed)) {}
return res;
}
#endif
};
#if defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE8)
template< bool Signed >
struct operations< 1u, Signed > :
public msvc_x86_operations< typename make_storage_type< 1u, Signed >::type, operations< 1u, Signed > >
{
typedef msvc_x86_operations< typename make_storage_type< 1u, Signed >::type, operations< 1u, Signed > > base_type;
typedef typename base_type::storage_type storage_type;
typedef typename make_storage_type< 1u, Signed >::aligned aligned_storage_type;
static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE_ADD8(&storage, v));
}
static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE8(&storage, v));
}
static BOOST_FORCEINLINE bool compare_exchange_strong(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT
{
storage_type previous = expected;
storage_type old_val = static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE8(&storage, desired, previous));
expected = old_val;
return (previous == old_val);
}
static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_AND8(&storage, v));
}
static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_OR8(&storage, v));
}
static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_XOR8(&storage, v));
}
};
#elif defined(_M_IX86)
template< bool Signed >
struct operations< 1u, Signed > :
public msvc_x86_operations< typename make_storage_type< 1u, Signed >::type, operations< 1u, Signed > >
{
typedef msvc_x86_operations< typename make_storage_type< 1u, Signed >::type, operations< 1u, Signed > > base_type;
typedef typename base_type::storage_type storage_type;
typedef typename make_storage_type< 1u, Signed >::aligned aligned_storage_type;
static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
__asm
{
mov edx, storage
movzx eax, v
lock xadd byte ptr [edx], al
mov v, al
};
base_type::fence_after(order);
return v;
}
static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
__asm
{
mov edx, storage
movzx eax, v
xchg byte ptr [edx], al
mov v, al
};
base_type::fence_after(order);
return v;
}
static BOOST_FORCEINLINE bool compare_exchange_strong(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order) BOOST_NOEXCEPT
{
base_type::fence_before(success_order);
bool success;
__asm
{
mov esi, expected
mov edi, storage
movzx eax, byte ptr [esi]
movzx edx, desired
lock cmpxchg byte ptr [edi], dl
mov byte ptr [esi], al
sete success
};
// The success and failure fences are equivalent anyway
base_type::fence_after(success_order);
return success;
}
static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
int backup;
__asm
{
mov backup, ebx
xor edx, edx
mov edi, storage
movzx ebx, v
movzx eax, byte ptr [edi]
align 16
again:
mov dl, al
and dl, bl
lock cmpxchg byte ptr [edi], dl
jne again
mov v, al
mov ebx, backup
};
base_type::fence_after(order);
return v;
}
static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
int backup;
__asm
{
mov backup, ebx
xor edx, edx
mov edi, storage
movzx ebx, v
movzx eax, byte ptr [edi]
align 16
again:
mov dl, al
or dl, bl
lock cmpxchg byte ptr [edi], dl
jne again
mov v, al
mov ebx, backup
};
base_type::fence_after(order);
return v;
}
static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
int backup;
__asm
{
mov backup, ebx
xor edx, edx
mov edi, storage
movzx ebx, v
movzx eax, byte ptr [edi]
align 16
again:
mov dl, al
xor dl, bl
lock cmpxchg byte ptr [edi], dl
jne again
mov v, al
mov ebx, backup
};
base_type::fence_after(order);
return v;
}
};
#else
template< bool Signed >
struct operations< 1u, Signed > :
public extending_cas_based_operations< operations< 4u, Signed >, 1u, Signed >
{
};
#endif
#if defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE16)
template< bool Signed >
struct operations< 2u, Signed > :
public msvc_x86_operations< typename make_storage_type< 2u, Signed >::type, operations< 2u, Signed > >
{
typedef msvc_x86_operations< typename make_storage_type< 2u, Signed >::type, operations< 2u, Signed > > base_type;
typedef typename base_type::storage_type storage_type;
typedef typename make_storage_type< 2u, Signed >::aligned aligned_storage_type;
static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE_ADD16(&storage, v));
}
static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE16(&storage, v));
}
static BOOST_FORCEINLINE bool compare_exchange_strong(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT
{
storage_type previous = expected;
storage_type old_val = static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE16(&storage, desired, previous));
expected = old_val;
return (previous == old_val);
}
static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_AND16(&storage, v));
}
static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_OR16(&storage, v));
}
static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_XOR16(&storage, v));
}
};
#elif defined(_M_IX86)
template< bool Signed >
struct operations< 2u, Signed > :
public msvc_x86_operations< typename make_storage_type< 2u, Signed >::type, operations< 2u, Signed > >
{
typedef msvc_x86_operations< typename make_storage_type< 2u, Signed >::type, operations< 2u, Signed > > base_type;
typedef typename base_type::storage_type storage_type;
typedef typename make_storage_type< 2u, Signed >::aligned aligned_storage_type;
static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
__asm
{
mov edx, storage
movzx eax, v
lock xadd word ptr [edx], ax
mov v, ax
};
base_type::fence_after(order);
return v;
}
static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
__asm
{
mov edx, storage
movzx eax, v
xchg word ptr [edx], ax
mov v, ax
};
base_type::fence_after(order);
return v;
}
static BOOST_FORCEINLINE bool compare_exchange_strong(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order) BOOST_NOEXCEPT
{
base_type::fence_before(success_order);
bool success;
__asm
{
mov esi, expected
mov edi, storage
movzx eax, word ptr [esi]
movzx edx, desired
lock cmpxchg word ptr [edi], dx
mov word ptr [esi], ax
sete success
};
// The success and failure fences are equivalent anyway
base_type::fence_after(success_order);
return success;
}
static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
int backup;
__asm
{
mov backup, ebx
xor edx, edx
mov edi, storage
movzx ebx, v
movzx eax, word ptr [edi]
align 16
again:
mov dx, ax
and dx, bx
lock cmpxchg word ptr [edi], dx
jne again
mov v, ax
mov ebx, backup
};
base_type::fence_after(order);
return v;
}
static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
int backup;
__asm
{
mov backup, ebx
xor edx, edx
mov edi, storage
movzx ebx, v
movzx eax, word ptr [edi]
align 16
again:
mov dx, ax
or dx, bx
lock cmpxchg word ptr [edi], dx
jne again
mov v, ax
mov ebx, backup
};
base_type::fence_after(order);
return v;
}
static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT
{
base_type::fence_before(order);
int backup;
__asm
{
mov backup, ebx
xor edx, edx
mov edi, storage
movzx ebx, v
movzx eax, word ptr [edi]
align 16
again:
mov dx, ax
xor dx, bx
lock cmpxchg word ptr [edi], dx
jne again
mov v, ax
mov ebx, backup
};
base_type::fence_after(order);
return v;
}
};
#else
template< bool Signed >
struct operations< 2u, Signed > :
public extending_cas_based_operations< operations< 4u, Signed >, 2u, Signed >
{
};
#endif
#if defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG8B)
template< bool Signed >
struct msvc_dcas_x86
{
typedef typename make_storage_type< 8u, Signed >::type storage_type;
typedef typename make_storage_type< 8u, Signed >::aligned aligned_storage_type;
static BOOST_CONSTEXPR_OR_CONST bool is_always_lock_free = true;
// Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 3A, 8.1.1. Guaranteed Atomic Operations:
//
// The Pentium processor (and newer processors since) guarantees that the following additional memory operations will always be carried out atomically:
// * Reading or writing a quadword aligned on a 64-bit boundary
//
// Luckily, the memory is almost always 8-byte aligned in our case because atomic<> uses 64 bit native types for storage and dynamic memory allocations
// have at least 8 byte alignment. The only unfortunate case is when atomic is placed on the stack and it is not 8-byte aligned (like on 32 bit Windows).
static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
storage_type volatile* p = &storage;
if (((uint32_t)p & 0x00000007) == 0)
{
#if defined(_M_IX86_FP) && _M_IX86_FP >= 2
#if defined(__AVX__)
__asm
{
mov edx, p
vmovq xmm4, v
vmovq qword ptr [edx], xmm4
};
#else
__asm
{
mov edx, p
movq xmm4, v
movq qword ptr [edx], xmm4
};
#endif
#else
__asm
{
mov edx, p
fild v
fistp qword ptr [edx]
};
#endif
}
else
{
int backup;
__asm
{
mov backup, ebx
mov edi, p
mov ebx, dword ptr [v]
mov ecx, dword ptr [v + 4]
mov eax, dword ptr [edi]
mov edx, dword ptr [edi + 4]
align 16
again:
lock cmpxchg8b qword ptr [edi]
jne again
mov ebx, backup
};
}
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
}
static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order) BOOST_NOEXCEPT
{
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
storage_type const volatile* p = &storage;
storage_type value;
if (((uint32_t)p & 0x00000007) == 0)
{
#if defined(_M_IX86_FP) && _M_IX86_FP >= 2
#if defined(__AVX__)
__asm
{
mov edx, p
vmovq xmm4, qword ptr [edx]
vmovq value, xmm4
};
#else
__asm
{
mov edx, p
movq xmm4, qword ptr [edx]
movq value, xmm4
};
#endif
#else
__asm
{
mov edx, p
fild qword ptr [edx]
fistp value
};
#endif
}
else
{
// We don't care for comparison result here; the previous value will be stored into value anyway.
// Also we don't care for ebx and ecx values, they just have to be equal to eax and edx before cmpxchg8b.
__asm
{
mov edi, p
mov eax, ebx
mov edx, ecx
lock cmpxchg8b qword ptr [edi]
mov dword ptr [value], eax
mov dword ptr [value + 4], edx
};
}
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
return value;
}
static BOOST_FORCEINLINE bool compare_exchange_strong(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT
{
// MSVC-11 in 32-bit mode sometimes generates messed up code without compiler barriers,
// even though the _InterlockedCompareExchange64 intrinsic already provides one.
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
storage_type volatile* p = &storage;
#if defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE64)
const storage_type old_val = (storage_type)BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE64(p, desired, expected);
const bool result = (old_val == expected);
expected = old_val;
#else
bool result;
int backup;
__asm
{
mov backup, ebx
mov edi, p
mov esi, expected
mov ebx, dword ptr [desired]
mov ecx, dword ptr [desired + 4]
mov eax, dword ptr [esi]
mov edx, dword ptr [esi + 4]
lock cmpxchg8b qword ptr [edi]
mov dword ptr [esi], eax
mov dword ptr [esi + 4], edx
mov ebx, backup
sete result
};
#endif
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
return result;
}
static BOOST_FORCEINLINE bool compare_exchange_weak(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT
{
return compare_exchange_strong(storage, expected, desired, success_order, failure_order);
}
static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
storage_type volatile* p = &storage;
int backup;
__asm
{
mov backup, ebx
mov edi, p
mov ebx, dword ptr [v]
mov ecx, dword ptr [v + 4]
mov eax, dword ptr [edi]
mov edx, dword ptr [edi + 4]
align 16
again:
lock cmpxchg8b qword ptr [edi]
jne again
mov ebx, backup
mov dword ptr [v], eax
mov dword ptr [v + 4], edx
};
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
return v;
}
static BOOST_FORCEINLINE bool is_lock_free(storage_type const volatile&) BOOST_NOEXCEPT
{
return true;
}
};
template< bool Signed >
struct operations< 8u, Signed > :
public cas_based_operations< msvc_dcas_x86< Signed > >
{
};
#elif defined(_M_AMD64)
template< bool Signed >
struct operations< 8u, Signed > :
public msvc_x86_operations< typename make_storage_type< 8u, Signed >::type, operations< 8u, Signed > >
{
typedef msvc_x86_operations< typename make_storage_type< 8u, Signed >::type, operations< 8u, Signed > > base_type;
typedef typename base_type::storage_type storage_type;
typedef typename make_storage_type< 8u, Signed >::aligned aligned_storage_type;
static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE_ADD64(&storage, v));
}
static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE64(&storage, v));
}
static BOOST_FORCEINLINE bool compare_exchange_strong(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT
{
storage_type previous = expected;
storage_type old_val = static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE64(&storage, desired, previous));
expected = old_val;
return (previous == old_val);
}
static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_AND64(&storage, v));
}
static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_OR64(&storage, v));
}
static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_XOR64(&storage, v));
}
};
#endif
#if defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG16B)
template< bool Signed >
struct msvc_dcas_x86_64
{
typedef typename make_storage_type< 16u, Signed >::type storage_type;
typedef typename make_storage_type< 16u, Signed >::aligned aligned_storage_type;
static BOOST_CONSTEXPR_OR_CONST bool is_always_lock_free = true;
static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT
{
storage_type value = const_cast< storage_type& >(storage);
while (!BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE128(&storage, v, &value)) {}
}
static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order) BOOST_NOEXCEPT
{
storage_type value = storage_type();
BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE128(&storage, value, &value);
return value;
}
static BOOST_FORCEINLINE bool compare_exchange_strong(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT
{
return !!BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE128(&storage, desired, &expected);
}
static BOOST_FORCEINLINE bool compare_exchange_weak(
storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT
{
return compare_exchange_strong(storage, expected, desired, success_order, failure_order);
}
static BOOST_FORCEINLINE bool is_lock_free(storage_type const volatile&) BOOST_NOEXCEPT
{
return true;
}
};
template< bool Signed >
struct operations< 16u, Signed > :
public cas_based_operations< cas_based_exchange< msvc_dcas_x86_64< Signed > > >
{
};
#endif // defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG16B)
BOOST_FORCEINLINE void thread_fence(memory_order order) BOOST_NOEXCEPT
{
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
if (order == memory_order_seq_cst)
msvc_x86_operations_base::hardware_full_fence();
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
}
BOOST_FORCEINLINE void signal_fence(memory_order order) BOOST_NOEXCEPT
{
if (order != memory_order_relaxed)
BOOST_ATOMIC_DETAIL_COMPILER_BARRIER();
}
} // namespace detail
} // namespace atomics
} // namespace boost
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif // BOOST_ATOMIC_DETAIL_OPS_MSVC_X86_HPP_INCLUDED_