js8call/.svn/pristine/74/74de4325cc17f784ddbb39c2013df8649fa17bb0.svn-base
2018-02-08 21:28:33 -05:00

213 lines
8.5 KiB
Plaintext

//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_IF_WITH_ATOMICS_HPP
#define BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_IF_WITH_ATOMICS_HPP
#include <iterator>
#include <boost/compute/types.hpp>
#include <boost/compute/functional.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/container/detail/scalar.hpp>
#include <boost/compute/iterator/buffer_iterator.hpp>
#include <boost/compute/type_traits/type_name.hpp>
#include <boost/compute/detail/meta_kernel.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/detail/parameter_cache.hpp>
namespace boost {
namespace compute {
namespace detail {
template<class InputIterator, class UnaryPredicate>
inline InputIterator find_if_with_atomics_one_vpt(InputIterator first,
InputIterator last,
UnaryPredicate predicate,
const size_t count,
command_queue &queue)
{
typedef typename std::iterator_traits<InputIterator>::value_type value_type;
typedef typename std::iterator_traits<InputIterator>::difference_type difference_type;
const context &context = queue.get_context();
detail::meta_kernel k("find_if");
size_t index_arg = k.add_arg<int *>(memory_object::global_memory, "index");
atomic_min<uint_> atomic_min_uint;
k << k.decl<const uint_>("i") << " = get_global_id(0);\n"
<< k.decl<const value_type>("value") << "="
<< first[k.var<const uint_>("i")] << ";\n"
<< "if(" << predicate(k.var<const value_type>("value")) << "){\n"
<< " " << atomic_min_uint(k.var<uint_ *>("index"), k.var<uint_>("i")) << ";\n"
<< "}\n";
kernel kernel = k.compile(context);
scalar<uint_> index(context);
kernel.set_arg(index_arg, index.get_buffer());
// initialize index to the last iterator's index
index.write(static_cast<uint_>(count), queue);
queue.enqueue_1d_range_kernel(kernel, 0, count, 0);
// read index and return iterator
return first + static_cast<difference_type>(index.read(queue));
}
template<class InputIterator, class UnaryPredicate>
inline InputIterator find_if_with_atomics_multiple_vpt(InputIterator first,
InputIterator last,
UnaryPredicate predicate,
const size_t count,
const size_t vpt,
command_queue &queue)
{
typedef typename std::iterator_traits<InputIterator>::value_type value_type;
typedef typename std::iterator_traits<InputIterator>::difference_type difference_type;
const context &context = queue.get_context();
const device &device = queue.get_device();
detail::meta_kernel k("find_if");
size_t index_arg = k.add_arg<uint_ *>(memory_object::global_memory, "index");
size_t count_arg = k.add_arg<const uint_>("count");
size_t vpt_arg = k.add_arg<const uint_>("vpt");
atomic_min<uint_> atomic_min_uint;
// for GPUs reads from global memory are coalesced
if(device.type() & device::gpu) {
k <<
k.decl<const uint_>("lsize") << " = get_local_size(0);\n" <<
k.decl<uint_>("id") << " = get_local_id(0) + get_group_id(0) * lsize * vpt;\n" <<
k.decl<const uint_>("end") << " = min(" <<
"id + (lsize *" << k.var<uint_>("vpt") << ")," <<
"count" <<
");\n" <<
// checking if the index is already found
"__local uint local_index;\n" <<
"if(get_local_id(0) == 0){\n" <<
" local_index = *index;\n " <<
"};\n" <<
"barrier(CLK_LOCAL_MEM_FENCE);\n" <<
"if(local_index < id){\n" <<
" return;\n" <<
"}\n" <<
"while(id < end){\n" <<
" " << k.decl<const value_type>("value") << " = " <<
first[k.var<const uint_>("id")] << ";\n"
" if(" << predicate(k.var<const value_type>("value")) << "){\n" <<
" " << atomic_min_uint(k.var<uint_ *>("index"),
k.var<uint_>("id")) << ";\n" <<
" return;\n"
" }\n" <<
" id+=lsize;\n" <<
"}\n";
// for CPUs (and other devices) reads are ordered so the big cache is
// efficiently used.
} else {
k <<
k.decl<uint_>("id") << " = get_global_id(0) * " << k.var<uint_>("vpt") << ";\n" <<
k.decl<const uint_>("end") << " = min(" <<
"id + " << k.var<uint_>("vpt") << "," <<
"count" <<
");\n" <<
"while(id < end && (*index) > id){\n" <<
" " << k.decl<const value_type>("value") << " = " <<
first[k.var<const uint_>("id")] << ";\n"
" if(" << predicate(k.var<const value_type>("value")) << "){\n" <<
" " << atomic_min_uint(k.var<uint_ *>("index"),
k.var<uint_>("id")) << ";\n" <<
" return;\n" <<
" }\n" <<
" id++;\n" <<
"}\n";
}
kernel kernel = k.compile(context);
scalar<uint_> index(context);
kernel.set_arg(index_arg, index.get_buffer());
kernel.set_arg(count_arg, static_cast<uint_>(count));
kernel.set_arg(vpt_arg, static_cast<uint_>(vpt));
// initialize index to the last iterator's index
index.write(static_cast<uint_>(count), queue);
const size_t global_wg_size = static_cast<size_t>(
std::ceil(float(count) / vpt)
);
queue.enqueue_1d_range_kernel(kernel, 0, global_wg_size, 0);
// read index and return iterator
return first + static_cast<difference_type>(index.read(queue));
}
template<class InputIterator, class UnaryPredicate>
inline InputIterator find_if_with_atomics(InputIterator first,
InputIterator last,
UnaryPredicate predicate,
command_queue &queue)
{
typedef typename std::iterator_traits<InputIterator>::value_type value_type;
size_t count = detail::iterator_range_size(first, last);
if(count == 0){
return last;
}
const device &device = queue.get_device();
// load cached parameters
std::string cache_key = std::string("__boost_find_if_with_atomics_")
+ type_name<value_type>();
boost::shared_ptr<parameter_cache> parameters =
detail::parameter_cache::get_global_cache(device);
// for relatively small inputs on GPUs kernel checking one value per thread
// (work-item) is more efficient than its multiple values per thread version
if(device.type() & device::gpu){
const size_t one_vpt_threshold =
parameters->get(cache_key, "one_vpt_threshold", 1048576);
if(count <= one_vpt_threshold){
return find_if_with_atomics_one_vpt(
first, last, predicate, count, queue
);
}
}
// values per thread
size_t vpt;
if(device.type() & device::gpu){
// get vpt parameter
vpt = parameters->get(cache_key, "vpt", 32);
} else {
// for CPUs work is split equally between compute units
const size_t max_compute_units =
device.get_info<CL_DEVICE_MAX_COMPUTE_UNITS>();
vpt = static_cast<size_t>(
std::ceil(float(count) / max_compute_units)
);
}
return find_if_with_atomics_multiple_vpt(
first, last, predicate, count, vpt, queue
);
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_IF_WITH_ATOMICS_HPP