642 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			642 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | /* | ||
|  |   [auto_generated] | ||
|  |   boost/numeric/odeint/stepper/bulirsch_stoer.hpp | ||
|  | 
 | ||
|  |   [begin_description] | ||
|  |   Implementation of the Burlish-Stoer method. As described in | ||
|  |   Ernst Hairer, Syvert Paul Norsett, Gerhard Wanner | ||
|  |   Solving Ordinary Differential Equations I. Nonstiff Problems. | ||
|  |   Springer Series in Comput. Mathematics, Vol. 8, Springer-Verlag 1987, Second revised edition 1993. | ||
|  |   [end_description] | ||
|  | 
 | ||
|  |   Copyright 2011-2013 Mario Mulansky | ||
|  |   Copyright 2011-2013 Karsten Ahnert | ||
|  |   Copyright 2012 Christoph Koke | ||
|  | 
 | ||
|  |   Distributed under the Boost Software License, Version 1.0. | ||
|  |   (See accompanying file LICENSE_1_0.txt or | ||
|  |   copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED | ||
|  | #define BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED | ||
|  | 
 | ||
|  | 
 | ||
|  | #include <iostream> | ||
|  | 
 | ||
|  | #include <algorithm> | ||
|  | 
 | ||
|  | #include <boost/config.hpp> // for min/max guidelines | ||
|  | 
 | ||
|  | #include <boost/numeric/odeint/util/bind.hpp> | ||
|  | #include <boost/numeric/odeint/util/unwrap_reference.hpp> | ||
|  | 
 | ||
|  | #include <boost/numeric/odeint/stepper/controlled_runge_kutta.hpp> | ||
|  | #include <boost/numeric/odeint/stepper/modified_midpoint.hpp> | ||
|  | #include <boost/numeric/odeint/stepper/controlled_step_result.hpp> | ||
|  | #include <boost/numeric/odeint/algebra/range_algebra.hpp> | ||
|  | #include <boost/numeric/odeint/algebra/default_operations.hpp> | ||
|  | #include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp> | ||
|  | #include <boost/numeric/odeint/algebra/operations_dispatcher.hpp> | ||
|  | 
 | ||
|  | #include <boost/numeric/odeint/util/state_wrapper.hpp> | ||
|  | #include <boost/numeric/odeint/util/is_resizeable.hpp> | ||
|  | #include <boost/numeric/odeint/util/resizer.hpp> | ||
|  | #include <boost/numeric/odeint/util/unit_helper.hpp> | ||
|  | #include <boost/numeric/odeint/util/detail/less_with_sign.hpp> | ||
|  | 
 | ||
|  | namespace boost { | ||
|  | namespace numeric { | ||
|  | namespace odeint { | ||
|  | 
 | ||
|  | template< | ||
|  |     class State , | ||
|  |     class Value = double , | ||
|  |     class Deriv = State , | ||
|  |     class Time = Value , | ||
|  |     class Algebra = typename algebra_dispatcher< State >::algebra_type , | ||
|  |     class Operations = typename operations_dispatcher< State >::operations_type , | ||
|  |     class Resizer = initially_resizer | ||
|  |     > | ||
|  | class bulirsch_stoer { | ||
|  | 
 | ||
|  | public: | ||
|  | 
 | ||
|  |     typedef State state_type; | ||
|  |     typedef Value value_type; | ||
|  |     typedef Deriv deriv_type; | ||
|  |     typedef Time time_type; | ||
|  |     typedef Algebra algebra_type; | ||
|  |     typedef Operations operations_type; | ||
|  |     typedef Resizer resizer_type; | ||
|  | #ifndef DOXYGEN_SKIP | ||
|  |     typedef state_wrapper< state_type > wrapped_state_type; | ||
|  |     typedef state_wrapper< deriv_type > wrapped_deriv_type; | ||
|  |     typedef controlled_stepper_tag stepper_category; | ||
|  | 
 | ||
|  |     typedef bulirsch_stoer< State , Value , Deriv , Time , Algebra , Operations , Resizer > controlled_error_bs_type; | ||
|  | 
 | ||
|  |     typedef typename inverse_time< time_type >::type inv_time_type; | ||
|  | 
 | ||
|  |     typedef std::vector< value_type > value_vector; | ||
|  |     typedef std::vector< time_type > time_vector; | ||
|  |     typedef std::vector< inv_time_type > inv_time_vector;  //should be 1/time_type for boost.units | ||
|  |     typedef std::vector< value_vector > value_matrix; | ||
|  |     typedef std::vector< size_t > int_vector; | ||
|  |     typedef std::vector< wrapped_state_type > state_table_type; | ||
|  | #endif //DOXYGEN_SKIP | ||
|  |     const static size_t m_k_max = 8; | ||
|  | 
 | ||
|  |     bulirsch_stoer( | ||
|  |         value_type eps_abs = 1E-6 , value_type eps_rel = 1E-6 , | ||
|  |         value_type factor_x = 1.0 , value_type factor_dxdt = 1.0 , | ||
|  |         time_type max_dt = static_cast<time_type>(0)) | ||
|  |         : m_error_checker( eps_abs , eps_rel , factor_x, factor_dxdt ) , m_midpoint() , | ||
|  |           m_last_step_rejected( false ) , m_first( true ) , | ||
|  |           m_max_dt(max_dt) , | ||
|  |           m_interval_sequence( m_k_max+1 ) , | ||
|  |           m_coeff( m_k_max+1 ) , | ||
|  |           m_cost( m_k_max+1 ) , | ||
|  |           m_table( m_k_max ) , | ||
|  |           STEPFAC1( 0.65 ) , STEPFAC2( 0.94 ) , STEPFAC3( 0.02 ) , STEPFAC4( 4.0 ) , KFAC1( 0.8 ) , KFAC2( 0.9 ) | ||
|  |     { | ||
|  |         BOOST_USING_STD_MIN(); | ||
|  |         BOOST_USING_STD_MAX(); | ||
|  |         /* initialize sequence of stage numbers and work */ | ||
|  |         for( unsigned short i = 0; i < m_k_max+1; i++ ) | ||
|  |         { | ||
|  |             m_interval_sequence[i] = 2 * (i+1); | ||
|  |             if( i == 0 ) | ||
|  |                 m_cost[i] = m_interval_sequence[i]; | ||
|  |             else | ||
|  |                 m_cost[i] = m_cost[i-1] + m_interval_sequence[i]; | ||
|  |             m_coeff[i].resize(i); | ||
|  |             for( size_t k = 0 ; k < i ; ++k  ) | ||
|  |             { | ||
|  |                 const value_type r = static_cast< value_type >( m_interval_sequence[i] ) / static_cast< value_type >( m_interval_sequence[k] ); | ||
|  |                 m_coeff[i][k] = 1.0 / ( r*r - static_cast< value_type >( 1.0 ) ); // coefficients for extrapolation | ||
|  |             } | ||
|  | 
 | ||
|  |             // crude estimate of optimal order | ||
|  | 
 | ||
|  |             m_current_k_opt = 4; | ||
|  |             /* no calculation because log10 might not exist for value_type! | ||
|  |             const value_type logfact( -log10( max BOOST_PREVENT_MACRO_SUBSTITUTION( eps_rel , static_cast< value_type >(1.0E-12) ) ) * 0.6 + 0.5 ); | ||
|  |             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( 1 ) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( m_k_max-1 ) , logfact )); | ||
|  |             */ | ||
|  |         } | ||
|  | 
 | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* | ||
|  |      * Version 1 : try_step( sys , x , t , dt ) | ||
|  |      * | ||
|  |      * The overloads are needed to solve the forwarding problem | ||
|  |      */ | ||
|  |     template< class System , class StateInOut > | ||
|  |     controlled_step_result try_step( System system , StateInOut &x , time_type &t , time_type &dt ) | ||
|  |     { | ||
|  |         return try_step_v1( system , x , t, dt ); | ||
|  |     } | ||
|  | 
 | ||
|  |     /** | ||
|  |      * \brief Second version to solve the forwarding problem, can be used with Boost.Range as StateInOut. | ||
|  |      */ | ||
|  |     template< class System , class StateInOut > | ||
|  |     controlled_step_result try_step( System system , const StateInOut &x , time_type &t , time_type &dt ) | ||
|  |     { | ||
|  |         return try_step_v1( system , x , t, dt ); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* | ||
|  |      * Version 2 : try_step( sys , x , dxdt , t , dt ) | ||
|  |      * | ||
|  |      * this version does not solve the forwarding problem, boost.range can not be used | ||
|  |      */ | ||
|  |     template< class System , class StateInOut , class DerivIn > | ||
|  |     controlled_step_result try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt ) | ||
|  |     { | ||
|  |         m_xnew_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_xnew< StateInOut > , detail::ref( *this ) , detail::_1 ) ); | ||
|  |         controlled_step_result res = try_step( system , x , dxdt , t , m_xnew.m_v , dt ); | ||
|  |         if( res == success ) | ||
|  |         { | ||
|  |             boost::numeric::odeint::copy( m_xnew.m_v , x ); | ||
|  |         } | ||
|  |         return res; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* | ||
|  |      * Version 3 : try_step( sys , in , t , out , dt ) | ||
|  |      * | ||
|  |      * this version does not solve the forwarding problem, boost.range can not be used | ||
|  |      */ | ||
|  |     template< class System , class StateIn , class StateOut > | ||
|  |     typename boost::disable_if< boost::is_same< StateIn , time_type > , controlled_step_result >::type | ||
|  |     try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt ) | ||
|  |     { | ||
|  |         typename odeint::unwrap_reference< System >::type &sys = system; | ||
|  |         m_dxdt_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateIn > , detail::ref( *this ) , detail::_1 ) ); | ||
|  |         sys( in , m_dxdt.m_v , t ); | ||
|  |         return try_step( system , in , m_dxdt.m_v , t , out , dt ); | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* | ||
|  |      * Full version : try_step( sys , in , dxdt_in , t , out , dt ) | ||
|  |      * | ||
|  |      * contains the actual implementation | ||
|  |      */ | ||
|  |     template< class System , class StateIn , class DerivIn , class StateOut > | ||
|  |     controlled_step_result try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt ) | ||
|  |     { | ||
|  |         if( m_max_dt != static_cast<time_type>(0) && detail::less_with_sign(m_max_dt, dt, dt) ) | ||
|  |         { | ||
|  |             // given step size is bigger then max_dt | ||
|  |             // set limit and return fail | ||
|  |             dt = m_max_dt; | ||
|  |             return fail; | ||
|  |         } | ||
|  | 
 | ||
|  |         BOOST_USING_STD_MIN(); | ||
|  |         BOOST_USING_STD_MAX(); | ||
|  | 
 | ||
|  |         static const value_type val1( 1.0 ); | ||
|  | 
 | ||
|  |         if( m_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) ) | ||
|  |         { | ||
|  |             reset(); // system resized -> reset | ||
|  |         } | ||
|  | 
 | ||
|  |         if( dt != m_dt_last ) | ||
|  |         { | ||
|  |             reset(); // step size changed from outside -> reset | ||
|  |         } | ||
|  | 
 | ||
|  |         bool reject( true ); | ||
|  | 
 | ||
|  |         time_vector h_opt( m_k_max+1 ); | ||
|  |         inv_time_vector work( m_k_max+1 ); | ||
|  | 
 | ||
|  |         time_type new_h = dt; | ||
|  | 
 | ||
|  |         /* m_current_k_opt is the estimated current optimal stage number */ | ||
|  |         for( size_t k = 0 ; k <= m_current_k_opt+1 ; k++ ) | ||
|  |         { | ||
|  |             /* the stage counts are stored in m_interval_sequence */ | ||
|  |             m_midpoint.set_steps( m_interval_sequence[k] ); | ||
|  |             if( k == 0 ) | ||
|  |             { | ||
|  |                 m_midpoint.do_step( system , in , dxdt , t , out , dt ); | ||
|  |                 /* the first step, nothing more to do */ | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                 m_midpoint.do_step( system , in , dxdt , t , m_table[k-1].m_v , dt ); | ||
|  |                 extrapolate( k , m_table , m_coeff , out ); | ||
|  |                 // get error estimate | ||
|  |                 m_algebra.for_each3( m_err.m_v , out , m_table[0].m_v , | ||
|  |                                      typename operations_type::template scale_sum2< value_type , value_type >( val1 , -val1 ) ); | ||
|  |                 const value_type error = m_error_checker.error( m_algebra , in , dxdt , m_err.m_v , dt ); | ||
|  |                 h_opt[k] = calc_h_opt( dt , error , k ); | ||
|  |                 work[k] = static_cast<value_type>( m_cost[k] ) / h_opt[k]; | ||
|  | 
 | ||
|  |                 if( (k == m_current_k_opt-1) || m_first ) | ||
|  |                 { // convergence before k_opt ? | ||
|  |                     if( error < 1.0 ) | ||
|  |                     { | ||
|  |                         //convergence | ||
|  |                         reject = false; | ||
|  |                         if( (work[k] < KFAC2*work[k-1]) || (m_current_k_opt <= 2) ) | ||
|  |                         { | ||
|  |                             // leave order as is (except we were in first round) | ||
|  |                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k)+1 ) ); | ||
|  |                             new_h = h_opt[k]; | ||
|  |                             new_h *= static_cast<value_type>( m_cost[k+1] ) / static_cast<value_type>( m_cost[k] ); | ||
|  |                         } else { | ||
|  |                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k) ) ); | ||
|  |                             new_h = h_opt[k]; | ||
|  |                         } | ||
|  |                         break; | ||
|  |                     } | ||
|  |                     else if( should_reject( error , k ) && !m_first ) | ||
|  |                     { | ||
|  |                         reject = true; | ||
|  |                         new_h = h_opt[k]; | ||
|  |                         break; | ||
|  |                     } | ||
|  |                 } | ||
|  |                 if( k == m_current_k_opt ) | ||
|  |                 { // convergence at k_opt ? | ||
|  |                     if( error < 1.0 ) | ||
|  |                     { | ||
|  |                         //convergence | ||
|  |                         reject = false; | ||
|  |                         if( (work[k-1] < KFAC2*work[k]) ) | ||
|  |                         { | ||
|  |                             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 ); | ||
|  |                             new_h = h_opt[m_current_k_opt]; | ||
|  |                         } | ||
|  |                         else if( (work[k] < KFAC2*work[k-1]) && !m_last_step_rejected ) | ||
|  |                         { | ||
|  |                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max-1) , static_cast<int>(m_current_k_opt)+1 ); | ||
|  |                             new_h = h_opt[k]; | ||
|  |                             new_h *= m_cost[m_current_k_opt]/m_cost[k]; | ||
|  |                         } else | ||
|  |                             new_h = h_opt[m_current_k_opt]; | ||
|  |                         break; | ||
|  |                     } | ||
|  |                     else if( should_reject( error , k ) ) | ||
|  |                     { | ||
|  |                         reject = true; | ||
|  |                         new_h = h_opt[m_current_k_opt]; | ||
|  |                         break; | ||
|  |                     } | ||
|  |                 } | ||
|  |                 if( k == m_current_k_opt+1 ) | ||
|  |                 { // convergence at k_opt+1 ? | ||
|  |                     if( error < 1.0 ) | ||
|  |                     {   //convergence | ||
|  |                         reject = false; | ||
|  |                         if( work[k-2] < KFAC2*work[k-1] ) | ||
|  |                             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 ); | ||
|  |                         if( (work[k] < KFAC2*work[m_current_k_opt]) && !m_last_step_rejected ) | ||
|  |                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , static_cast<int>(k) ); | ||
|  |                         new_h = h_opt[m_current_k_opt]; | ||
|  |                     } else | ||
|  |                     { | ||
|  |                         reject = true; | ||
|  |                         new_h = h_opt[m_current_k_opt]; | ||
|  |                     } | ||
|  |                     break; | ||
|  |                 } | ||
|  |             } | ||
|  |         } | ||
|  | 
 | ||
|  |         if( !reject ) | ||
|  |         { | ||
|  |             t += dt; | ||
|  |         } | ||
|  | 
 | ||
|  |         if( !m_last_step_rejected || boost::numeric::odeint::detail::less_with_sign(new_h, dt, dt) ) | ||
|  |         { | ||
|  |             // limit step size | ||
|  |             if( m_max_dt != static_cast<time_type>(0) ) | ||
|  |             { | ||
|  |                 new_h = detail::min_abs(m_max_dt, new_h); | ||
|  |             } | ||
|  |             m_dt_last = new_h; | ||
|  |             dt = new_h; | ||
|  |         } | ||
|  | 
 | ||
|  |         m_last_step_rejected = reject; | ||
|  |         m_first = false; | ||
|  | 
 | ||
|  |         if( reject ) | ||
|  |             return fail; | ||
|  |         else | ||
|  |             return success; | ||
|  |     } | ||
|  | 
 | ||
|  |     /** \brief Resets the internal state of the stepper */ | ||
|  |     void reset() | ||
|  |     { | ||
|  |         m_first = true; | ||
|  |         m_last_step_rejected = false; | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* Resizer methods */ | ||
|  | 
 | ||
|  |     template< class StateIn > | ||
|  |     void adjust_size( const StateIn &x ) | ||
|  |     { | ||
|  |         resize_m_dxdt( x ); | ||
|  |         resize_m_xnew( x ); | ||
|  |         resize_impl( x ); | ||
|  |         m_midpoint.adjust_size( x ); | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  | private: | ||
|  | 
 | ||
|  |     template< class StateIn > | ||
|  |     bool resize_m_dxdt( const StateIn &x ) | ||
|  |     { | ||
|  |         return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() ); | ||
|  |     } | ||
|  | 
 | ||
|  |     template< class StateIn > | ||
|  |     bool resize_m_xnew( const StateIn &x ) | ||
|  |     { | ||
|  |         return adjust_size_by_resizeability( m_xnew , x , typename is_resizeable<state_type>::type() ); | ||
|  |     } | ||
|  | 
 | ||
|  |     template< class StateIn > | ||
|  |     bool resize_impl( const StateIn &x ) | ||
|  |     { | ||
|  |         bool resized( false ); | ||
|  |         for( size_t i = 0 ; i < m_k_max ; ++i ) | ||
|  |             resized |= adjust_size_by_resizeability( m_table[i] , x , typename is_resizeable<state_type>::type() ); | ||
|  |         resized |= adjust_size_by_resizeability( m_err , x , typename is_resizeable<state_type>::type() ); | ||
|  |         return resized; | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |     template< class System , class StateInOut > | ||
|  |     controlled_step_result try_step_v1( System system , StateInOut &x , time_type &t , time_type &dt ) | ||
|  |     { | ||
|  |         typename odeint::unwrap_reference< System >::type &sys = system; | ||
|  |         m_dxdt_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateInOut > , detail::ref( *this ) , detail::_1 ) ); | ||
|  |         sys( x , m_dxdt.m_v ,t ); | ||
|  |         return try_step( system , x , m_dxdt.m_v , t , dt ); | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |     template< class StateInOut > | ||
|  |     void extrapolate( size_t k , state_table_type &table , const value_matrix &coeff , StateInOut &xest ) | ||
|  |     /* polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf | ||
|  |        uses the obtained intermediate results to extrapolate to dt->0  | ||
|  |     */ | ||
|  |     { | ||
|  |         static const value_type val1 = static_cast< value_type >( 1.0 ); | ||
|  |         for( int j=k-1 ; j>0 ; --j ) | ||
|  |         { | ||
|  |             m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v , | ||
|  |                                  typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][j] , -coeff[k][j] ) ); | ||
|  |         } | ||
|  |         m_algebra.for_each3( xest , table[0].m_v , xest , | ||
|  |                              typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][0] , -coeff[k][0]) ); | ||
|  |     } | ||
|  | 
 | ||
|  |     time_type calc_h_opt( time_type h , value_type error , size_t k ) const | ||
|  |     /* calculates the optimal step size for a given error and stage number */ | ||
|  |     { | ||
|  |         BOOST_USING_STD_MIN(); | ||
|  |         BOOST_USING_STD_MAX(); | ||
|  |         using std::pow; | ||
|  |         value_type expo( 1.0/(2*k+1) ); | ||
|  |         value_type facmin = pow BOOST_PREVENT_MACRO_SUBSTITUTION( STEPFAC3 , expo ); | ||
|  |         value_type fac; | ||
|  |         if (error == 0.0) | ||
|  |             fac=1.0/facmin; | ||
|  |         else | ||
|  |         { | ||
|  |             fac = STEPFAC2 / pow BOOST_PREVENT_MACRO_SUBSTITUTION( error / STEPFAC1 , expo ); | ||
|  |             fac = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(facmin/STEPFAC4) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(1.0/facmin) , fac ) ); | ||
|  |         } | ||
|  |         return h*fac; | ||
|  |     } | ||
|  | 
 | ||
|  |     controlled_step_result set_k_opt( size_t k , const inv_time_vector &work , const time_vector &h_opt , time_type &dt ) | ||
|  |     /* calculates the optimal stage number */ | ||
|  |     { | ||
|  |         if( k == 1 ) | ||
|  |         { | ||
|  |             m_current_k_opt = 2; | ||
|  |             return success; | ||
|  |         } | ||
|  |         if( (work[k-1] < KFAC1*work[k]) || (k == m_k_max) ) | ||
|  |         {   // order decrease | ||
|  |             m_current_k_opt = k-1; | ||
|  |             dt = h_opt[ m_current_k_opt ]; | ||
|  |             return success; | ||
|  |         } | ||
|  |         else if( (work[k] < KFAC2*work[k-1]) || m_last_step_rejected || (k == m_k_max-1) ) | ||
|  |         {   // same order - also do this if last step got rejected | ||
|  |             m_current_k_opt = k; | ||
|  |             dt = h_opt[ m_current_k_opt ]; | ||
|  |             return success; | ||
|  |         } | ||
|  |         else | ||
|  |         {   // order increase - only if last step was not rejected | ||
|  |             m_current_k_opt = k+1; | ||
|  |             dt = h_opt[ m_current_k_opt-1 ] * m_cost[ m_current_k_opt ] / m_cost[ m_current_k_opt-1 ] ; | ||
|  |             return success; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     bool in_convergence_window( size_t k ) const | ||
|  |     { | ||
|  |         if( (k == m_current_k_opt-1) && !m_last_step_rejected ) | ||
|  |             return true; // decrease stepsize only if last step was not rejected | ||
|  |         return ( (k == m_current_k_opt) || (k == m_current_k_opt+1) ); | ||
|  |     } | ||
|  | 
 | ||
|  |     bool should_reject( value_type error , size_t k ) const | ||
|  |     { | ||
|  |         if( k == m_current_k_opt-1 ) | ||
|  |         { | ||
|  |             const value_type d = m_interval_sequence[m_current_k_opt] * m_interval_sequence[m_current_k_opt+1] / | ||
|  |                 (m_interval_sequence[0]*m_interval_sequence[0]); | ||
|  |             //step will fail, criterion 17.3.17 in NR | ||
|  |             return ( error > d*d ); | ||
|  |         } | ||
|  |         else if( k == m_current_k_opt ) | ||
|  |         { | ||
|  |             const value_type d = m_interval_sequence[m_current_k_opt] / m_interval_sequence[0]; | ||
|  |             return ( error > d*d ); | ||
|  |         } else | ||
|  |             return error > 1.0; | ||
|  |     } | ||
|  | 
 | ||
|  |     default_error_checker< value_type, algebra_type , operations_type > m_error_checker; | ||
|  |     modified_midpoint< state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type > m_midpoint; | ||
|  | 
 | ||
|  |     bool m_last_step_rejected; | ||
|  |     bool m_first; | ||
|  | 
 | ||
|  |     time_type m_dt_last; | ||
|  |     time_type m_t_last; | ||
|  |     time_type m_max_dt; | ||
|  | 
 | ||
|  |     size_t m_current_k_opt; | ||
|  | 
 | ||
|  |     algebra_type m_algebra; | ||
|  | 
 | ||
|  |     resizer_type m_dxdt_resizer; | ||
|  |     resizer_type m_xnew_resizer; | ||
|  |     resizer_type m_resizer; | ||
|  | 
 | ||
|  |     wrapped_state_type m_xnew; | ||
|  |     wrapped_state_type m_err; | ||
|  |     wrapped_deriv_type m_dxdt; | ||
|  | 
 | ||
|  |     int_vector m_interval_sequence; // stores the successive interval counts | ||
|  |     value_matrix m_coeff; | ||
|  |     int_vector m_cost; // costs for interval count | ||
|  | 
 | ||
|  |     state_table_type m_table; // sequence of states for extrapolation | ||
|  | 
 | ||
|  |     value_type STEPFAC1 , STEPFAC2 , STEPFAC3 , STEPFAC4 , KFAC1 , KFAC2; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /******** DOXYGEN ********/ | ||
|  | /** | ||
|  |  * \class bulirsch_stoer | ||
|  |  * \brief The Bulirsch-Stoer algorithm. | ||
|  |  *  | ||
|  |  * The Bulirsch-Stoer is a controlled stepper that adjusts both step size | ||
|  |  * and order of the method. The algorithm uses the modified midpoint and | ||
|  |  * a polynomial extrapolation compute the solution. | ||
|  |  * | ||
|  |  * \tparam State The state type. | ||
|  |  * \tparam Value The value type. | ||
|  |  * \tparam Deriv The type representing the time derivative of the state. | ||
|  |  * \tparam Time The time representing the independent variable - the time. | ||
|  |  * \tparam Algebra The algebra type. | ||
|  |  * \tparam Operations The operations type. | ||
|  |  * \tparam Resizer The resizer policy type. | ||
|  |  */ | ||
|  | 
 | ||
|  |     /** | ||
|  |      * \fn bulirsch_stoer::bulirsch_stoer( value_type eps_abs , value_type eps_rel , value_type factor_x , value_type factor_dxdt ) | ||
|  |      * \brief Constructs the bulirsch_stoer class, including initialization of  | ||
|  |      * the error bounds. | ||
|  |      * | ||
|  |      * \param eps_abs Absolute tolerance level. | ||
|  |      * \param eps_rel Relative tolerance level. | ||
|  |      * \param factor_x Factor for the weight of the state. | ||
|  |      * \param factor_dxdt Factor for the weight of the derivative. | ||
|  |      */ | ||
|  | 
 | ||
|  |     /** | ||
|  |      * \fn bulirsch_stoer::try_step( System system , StateInOut &x , time_type &t , time_type &dt ) | ||
|  |      * \brief Tries to perform one step. | ||
|  |      * | ||
|  |      * This method tries to do one step with step size dt. If the error estimate | ||
|  |      * is to large, the step is rejected and the method returns fail and the  | ||
|  |      * step size dt is reduced. If the error estimate is acceptably small, the | ||
|  |      * step is performed, success is returned and dt might be increased to make  | ||
|  |      * the steps as large as possible. This method also updates t if a step is | ||
|  |      * performed. Also, the internal order of the stepper is adjusted if required. | ||
|  |      * | ||
|  |      * \param system The system function to solve, hence the r.h.s. of the ODE.  | ||
|  |      * It must fulfill the Simple System concept. | ||
|  |      * \param x The state of the ODE which should be solved. Overwritten if  | ||
|  |      * the step is successful. | ||
|  |      * \param t The value of the time. Updated if the step is successful. | ||
|  |      * \param dt The step size. Updated. | ||
|  |      * \return success if the step was accepted, fail otherwise. | ||
|  |      */ | ||
|  | 
 | ||
|  |     /** | ||
|  |      * \fn bulirsch_stoer::try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt ) | ||
|  |      * \brief Tries to perform one step. | ||
|  |      * | ||
|  |      * This method tries to do one step with step size dt. If the error estimate | ||
|  |      * is to large, the step is rejected and the method returns fail and the  | ||
|  |      * step size dt is reduced. If the error estimate is acceptably small, the | ||
|  |      * step is performed, success is returned and dt might be increased to make  | ||
|  |      * the steps as large as possible. This method also updates t if a step is | ||
|  |      * performed. Also, the internal order of the stepper is adjusted if required. | ||
|  |      * | ||
|  |      * \param system The system function to solve, hence the r.h.s. of the ODE.  | ||
|  |      * It must fulfill the Simple System concept. | ||
|  |      * \param x The state of the ODE which should be solved. Overwritten if  | ||
|  |      * the step is successful. | ||
|  |      * \param dxdt The derivative of state. | ||
|  |      * \param t The value of the time. Updated if the step is successful. | ||
|  |      * \param dt The step size. Updated. | ||
|  |      * \return success if the step was accepted, fail otherwise. | ||
|  |      */ | ||
|  | 
 | ||
|  |     /** | ||
|  |      * \fn bulirsch_stoer::try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt ) | ||
|  |      * \brief Tries to perform one step. | ||
|  |      * | ||
|  |      * \note This method is disabled if state_type=time_type to avoid ambiguity. | ||
|  |      * | ||
|  |      * This method tries to do one step with step size dt. If the error estimate | ||
|  |      * is to large, the step is rejected and the method returns fail and the  | ||
|  |      * step size dt is reduced. If the error estimate is acceptably small, the | ||
|  |      * step is performed, success is returned and dt might be increased to make  | ||
|  |      * the steps as large as possible. This method also updates t if a step is | ||
|  |      * performed. Also, the internal order of the stepper is adjusted if required. | ||
|  |      * | ||
|  |      * \param system The system function to solve, hence the r.h.s. of the ODE.  | ||
|  |      * It must fulfill the Simple System concept. | ||
|  |      * \param in The state of the ODE which should be solved. | ||
|  |      * \param t The value of the time. Updated if the step is successful. | ||
|  |      * \param out Used to store the result of the step. | ||
|  |      * \param dt The step size. Updated. | ||
|  |      * \return success if the step was accepted, fail otherwise. | ||
|  |      */ | ||
|  | 
 | ||
|  | 
 | ||
|  |     /** | ||
|  |      * \fn bulirsch_stoer::try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt ) | ||
|  |      * \brief Tries to perform one step. | ||
|  |      * | ||
|  |      * This method tries to do one step with step size dt. If the error estimate | ||
|  |      * is to large, the step is rejected and the method returns fail and the  | ||
|  |      * step size dt is reduced. If the error estimate is acceptably small, the | ||
|  |      * step is performed, success is returned and dt might be increased to make  | ||
|  |      * the steps as large as possible. This method also updates t if a step is | ||
|  |      * performed. Also, the internal order of the stepper is adjusted if required. | ||
|  |      * | ||
|  |      * \param system The system function to solve, hence the r.h.s. of the ODE.  | ||
|  |      * It must fulfill the Simple System concept. | ||
|  |      * \param in The state of the ODE which should be solved. | ||
|  |      * \param dxdt The derivative of state. | ||
|  |      * \param t The value of the time. Updated if the step is successful. | ||
|  |      * \param out Used to store the result of the step. | ||
|  |      * \param dt The step size. Updated. | ||
|  |      * \return success if the step was accepted, fail otherwise. | ||
|  |      */ | ||
|  | 
 | ||
|  | 
 | ||
|  |     /** | ||
|  |      * \fn bulirsch_stoer::adjust_size( const StateIn &x ) | ||
|  |      * \brief Adjust the size of all temporaries in the stepper manually. | ||
|  |      * \param x A state from which the size of the temporaries to be resized is deduced. | ||
|  |      */ | ||
|  | 
 | ||
|  | } | ||
|  | } | ||
|  | } | ||
|  | 
 | ||
|  | #endif // BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED |