642 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			642 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| /*
 | |
|   [auto_generated]
 | |
|   boost/numeric/odeint/stepper/bulirsch_stoer.hpp
 | |
| 
 | |
|   [begin_description]
 | |
|   Implementation of the Burlish-Stoer method. As described in
 | |
|   Ernst Hairer, Syvert Paul Norsett, Gerhard Wanner
 | |
|   Solving Ordinary Differential Equations I. Nonstiff Problems.
 | |
|   Springer Series in Comput. Mathematics, Vol. 8, Springer-Verlag 1987, Second revised edition 1993.
 | |
|   [end_description]
 | |
| 
 | |
|   Copyright 2011-2013 Mario Mulansky
 | |
|   Copyright 2011-2013 Karsten Ahnert
 | |
|   Copyright 2012 Christoph Koke
 | |
| 
 | |
|   Distributed under the Boost Software License, Version 1.0.
 | |
|   (See accompanying file LICENSE_1_0.txt or
 | |
|   copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
 | |
| #define BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
 | |
| 
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| #include <algorithm>
 | |
| 
 | |
| #include <boost/config.hpp> // for min/max guidelines
 | |
| 
 | |
| #include <boost/numeric/odeint/util/bind.hpp>
 | |
| #include <boost/numeric/odeint/util/unwrap_reference.hpp>
 | |
| 
 | |
| #include <boost/numeric/odeint/stepper/controlled_runge_kutta.hpp>
 | |
| #include <boost/numeric/odeint/stepper/modified_midpoint.hpp>
 | |
| #include <boost/numeric/odeint/stepper/controlled_step_result.hpp>
 | |
| #include <boost/numeric/odeint/algebra/range_algebra.hpp>
 | |
| #include <boost/numeric/odeint/algebra/default_operations.hpp>
 | |
| #include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
 | |
| #include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
 | |
| 
 | |
| #include <boost/numeric/odeint/util/state_wrapper.hpp>
 | |
| #include <boost/numeric/odeint/util/is_resizeable.hpp>
 | |
| #include <boost/numeric/odeint/util/resizer.hpp>
 | |
| #include <boost/numeric/odeint/util/unit_helper.hpp>
 | |
| #include <boost/numeric/odeint/util/detail/less_with_sign.hpp>
 | |
| 
 | |
| namespace boost {
 | |
| namespace numeric {
 | |
| namespace odeint {
 | |
| 
 | |
| template<
 | |
|     class State ,
 | |
|     class Value = double ,
 | |
|     class Deriv = State ,
 | |
|     class Time = Value ,
 | |
|     class Algebra = typename algebra_dispatcher< State >::algebra_type ,
 | |
|     class Operations = typename operations_dispatcher< State >::operations_type ,
 | |
|     class Resizer = initially_resizer
 | |
|     >
 | |
| class bulirsch_stoer {
 | |
| 
 | |
| public:
 | |
| 
 | |
|     typedef State state_type;
 | |
|     typedef Value value_type;
 | |
|     typedef Deriv deriv_type;
 | |
|     typedef Time time_type;
 | |
|     typedef Algebra algebra_type;
 | |
|     typedef Operations operations_type;
 | |
|     typedef Resizer resizer_type;
 | |
| #ifndef DOXYGEN_SKIP
 | |
|     typedef state_wrapper< state_type > wrapped_state_type;
 | |
|     typedef state_wrapper< deriv_type > wrapped_deriv_type;
 | |
|     typedef controlled_stepper_tag stepper_category;
 | |
| 
 | |
|     typedef bulirsch_stoer< State , Value , Deriv , Time , Algebra , Operations , Resizer > controlled_error_bs_type;
 | |
| 
 | |
|     typedef typename inverse_time< time_type >::type inv_time_type;
 | |
| 
 | |
|     typedef std::vector< value_type > value_vector;
 | |
|     typedef std::vector< time_type > time_vector;
 | |
|     typedef std::vector< inv_time_type > inv_time_vector;  //should be 1/time_type for boost.units
 | |
|     typedef std::vector< value_vector > value_matrix;
 | |
|     typedef std::vector< size_t > int_vector;
 | |
|     typedef std::vector< wrapped_state_type > state_table_type;
 | |
| #endif //DOXYGEN_SKIP
 | |
|     const static size_t m_k_max = 8;
 | |
| 
 | |
|     bulirsch_stoer(
 | |
|         value_type eps_abs = 1E-6 , value_type eps_rel = 1E-6 ,
 | |
|         value_type factor_x = 1.0 , value_type factor_dxdt = 1.0 ,
 | |
|         time_type max_dt = static_cast<time_type>(0))
 | |
|         : m_error_checker( eps_abs , eps_rel , factor_x, factor_dxdt ) , m_midpoint() ,
 | |
|           m_last_step_rejected( false ) , m_first( true ) ,
 | |
|           m_max_dt(max_dt) ,
 | |
|           m_interval_sequence( m_k_max+1 ) ,
 | |
|           m_coeff( m_k_max+1 ) ,
 | |
|           m_cost( m_k_max+1 ) ,
 | |
|           m_table( m_k_max ) ,
 | |
|           STEPFAC1( 0.65 ) , STEPFAC2( 0.94 ) , STEPFAC3( 0.02 ) , STEPFAC4( 4.0 ) , KFAC1( 0.8 ) , KFAC2( 0.9 )
 | |
|     {
 | |
|         BOOST_USING_STD_MIN();
 | |
|         BOOST_USING_STD_MAX();
 | |
|         /* initialize sequence of stage numbers and work */
 | |
|         for( unsigned short i = 0; i < m_k_max+1; i++ )
 | |
|         {
 | |
|             m_interval_sequence[i] = 2 * (i+1);
 | |
|             if( i == 0 )
 | |
|                 m_cost[i] = m_interval_sequence[i];
 | |
|             else
 | |
|                 m_cost[i] = m_cost[i-1] + m_interval_sequence[i];
 | |
|             m_coeff[i].resize(i);
 | |
|             for( size_t k = 0 ; k < i ; ++k  )
 | |
|             {
 | |
|                 const value_type r = static_cast< value_type >( m_interval_sequence[i] ) / static_cast< value_type >( m_interval_sequence[k] );
 | |
|                 m_coeff[i][k] = 1.0 / ( r*r - static_cast< value_type >( 1.0 ) ); // coefficients for extrapolation
 | |
|             }
 | |
| 
 | |
|             // crude estimate of optimal order
 | |
| 
 | |
|             m_current_k_opt = 4;
 | |
|             /* no calculation because log10 might not exist for value_type!
 | |
|             const value_type logfact( -log10( max BOOST_PREVENT_MACRO_SUBSTITUTION( eps_rel , static_cast< value_type >(1.0E-12) ) ) * 0.6 + 0.5 );
 | |
|             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( 1 ) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( m_k_max-1 ) , logfact ));
 | |
|             */
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Version 1 : try_step( sys , x , t , dt )
 | |
|      *
 | |
|      * The overloads are needed to solve the forwarding problem
 | |
|      */
 | |
|     template< class System , class StateInOut >
 | |
|     controlled_step_result try_step( System system , StateInOut &x , time_type &t , time_type &dt )
 | |
|     {
 | |
|         return try_step_v1( system , x , t, dt );
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * \brief Second version to solve the forwarding problem, can be used with Boost.Range as StateInOut.
 | |
|      */
 | |
|     template< class System , class StateInOut >
 | |
|     controlled_step_result try_step( System system , const StateInOut &x , time_type &t , time_type &dt )
 | |
|     {
 | |
|         return try_step_v1( system , x , t, dt );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Version 2 : try_step( sys , x , dxdt , t , dt )
 | |
|      *
 | |
|      * this version does not solve the forwarding problem, boost.range can not be used
 | |
|      */
 | |
|     template< class System , class StateInOut , class DerivIn >
 | |
|     controlled_step_result try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt )
 | |
|     {
 | |
|         m_xnew_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_xnew< StateInOut > , detail::ref( *this ) , detail::_1 ) );
 | |
|         controlled_step_result res = try_step( system , x , dxdt , t , m_xnew.m_v , dt );
 | |
|         if( res == success )
 | |
|         {
 | |
|             boost::numeric::odeint::copy( m_xnew.m_v , x );
 | |
|         }
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Version 3 : try_step( sys , in , t , out , dt )
 | |
|      *
 | |
|      * this version does not solve the forwarding problem, boost.range can not be used
 | |
|      */
 | |
|     template< class System , class StateIn , class StateOut >
 | |
|     typename boost::disable_if< boost::is_same< StateIn , time_type > , controlled_step_result >::type
 | |
|     try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt )
 | |
|     {
 | |
|         typename odeint::unwrap_reference< System >::type &sys = system;
 | |
|         m_dxdt_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateIn > , detail::ref( *this ) , detail::_1 ) );
 | |
|         sys( in , m_dxdt.m_v , t );
 | |
|         return try_step( system , in , m_dxdt.m_v , t , out , dt );
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Full version : try_step( sys , in , dxdt_in , t , out , dt )
 | |
|      *
 | |
|      * contains the actual implementation
 | |
|      */
 | |
|     template< class System , class StateIn , class DerivIn , class StateOut >
 | |
|     controlled_step_result try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt )
 | |
|     {
 | |
|         if( m_max_dt != static_cast<time_type>(0) && detail::less_with_sign(m_max_dt, dt, dt) )
 | |
|         {
 | |
|             // given step size is bigger then max_dt
 | |
|             // set limit and return fail
 | |
|             dt = m_max_dt;
 | |
|             return fail;
 | |
|         }
 | |
| 
 | |
|         BOOST_USING_STD_MIN();
 | |
|         BOOST_USING_STD_MAX();
 | |
| 
 | |
|         static const value_type val1( 1.0 );
 | |
| 
 | |
|         if( m_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) )
 | |
|         {
 | |
|             reset(); // system resized -> reset
 | |
|         }
 | |
| 
 | |
|         if( dt != m_dt_last )
 | |
|         {
 | |
|             reset(); // step size changed from outside -> reset
 | |
|         }
 | |
| 
 | |
|         bool reject( true );
 | |
| 
 | |
|         time_vector h_opt( m_k_max+1 );
 | |
|         inv_time_vector work( m_k_max+1 );
 | |
| 
 | |
|         time_type new_h = dt;
 | |
| 
 | |
|         /* m_current_k_opt is the estimated current optimal stage number */
 | |
|         for( size_t k = 0 ; k <= m_current_k_opt+1 ; k++ )
 | |
|         {
 | |
|             /* the stage counts are stored in m_interval_sequence */
 | |
|             m_midpoint.set_steps( m_interval_sequence[k] );
 | |
|             if( k == 0 )
 | |
|             {
 | |
|                 m_midpoint.do_step( system , in , dxdt , t , out , dt );
 | |
|                 /* the first step, nothing more to do */
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 m_midpoint.do_step( system , in , dxdt , t , m_table[k-1].m_v , dt );
 | |
|                 extrapolate( k , m_table , m_coeff , out );
 | |
|                 // get error estimate
 | |
|                 m_algebra.for_each3( m_err.m_v , out , m_table[0].m_v ,
 | |
|                                      typename operations_type::template scale_sum2< value_type , value_type >( val1 , -val1 ) );
 | |
|                 const value_type error = m_error_checker.error( m_algebra , in , dxdt , m_err.m_v , dt );
 | |
|                 h_opt[k] = calc_h_opt( dt , error , k );
 | |
|                 work[k] = static_cast<value_type>( m_cost[k] ) / h_opt[k];
 | |
| 
 | |
|                 if( (k == m_current_k_opt-1) || m_first )
 | |
|                 { // convergence before k_opt ?
 | |
|                     if( error < 1.0 )
 | |
|                     {
 | |
|                         //convergence
 | |
|                         reject = false;
 | |
|                         if( (work[k] < KFAC2*work[k-1]) || (m_current_k_opt <= 2) )
 | |
|                         {
 | |
|                             // leave order as is (except we were in first round)
 | |
|                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k)+1 ) );
 | |
|                             new_h = h_opt[k];
 | |
|                             new_h *= static_cast<value_type>( m_cost[k+1] ) / static_cast<value_type>( m_cost[k] );
 | |
|                         } else {
 | |
|                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k) ) );
 | |
|                             new_h = h_opt[k];
 | |
|                         }
 | |
|                         break;
 | |
|                     }
 | |
|                     else if( should_reject( error , k ) && !m_first )
 | |
|                     {
 | |
|                         reject = true;
 | |
|                         new_h = h_opt[k];
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if( k == m_current_k_opt )
 | |
|                 { // convergence at k_opt ?
 | |
|                     if( error < 1.0 )
 | |
|                     {
 | |
|                         //convergence
 | |
|                         reject = false;
 | |
|                         if( (work[k-1] < KFAC2*work[k]) )
 | |
|                         {
 | |
|                             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
 | |
|                             new_h = h_opt[m_current_k_opt];
 | |
|                         }
 | |
|                         else if( (work[k] < KFAC2*work[k-1]) && !m_last_step_rejected )
 | |
|                         {
 | |
|                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max-1) , static_cast<int>(m_current_k_opt)+1 );
 | |
|                             new_h = h_opt[k];
 | |
|                             new_h *= m_cost[m_current_k_opt]/m_cost[k];
 | |
|                         } else
 | |
|                             new_h = h_opt[m_current_k_opt];
 | |
|                         break;
 | |
|                     }
 | |
|                     else if( should_reject( error , k ) )
 | |
|                     {
 | |
|                         reject = true;
 | |
|                         new_h = h_opt[m_current_k_opt];
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if( k == m_current_k_opt+1 )
 | |
|                 { // convergence at k_opt+1 ?
 | |
|                     if( error < 1.0 )
 | |
|                     {   //convergence
 | |
|                         reject = false;
 | |
|                         if( work[k-2] < KFAC2*work[k-1] )
 | |
|                             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
 | |
|                         if( (work[k] < KFAC2*work[m_current_k_opt]) && !m_last_step_rejected )
 | |
|                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , static_cast<int>(k) );
 | |
|                         new_h = h_opt[m_current_k_opt];
 | |
|                     } else
 | |
|                     {
 | |
|                         reject = true;
 | |
|                         new_h = h_opt[m_current_k_opt];
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if( !reject )
 | |
|         {
 | |
|             t += dt;
 | |
|         }
 | |
| 
 | |
|         if( !m_last_step_rejected || boost::numeric::odeint::detail::less_with_sign(new_h, dt, dt) )
 | |
|         {
 | |
|             // limit step size
 | |
|             if( m_max_dt != static_cast<time_type>(0) )
 | |
|             {
 | |
|                 new_h = detail::min_abs(m_max_dt, new_h);
 | |
|             }
 | |
|             m_dt_last = new_h;
 | |
|             dt = new_h;
 | |
|         }
 | |
| 
 | |
|         m_last_step_rejected = reject;
 | |
|         m_first = false;
 | |
| 
 | |
|         if( reject )
 | |
|             return fail;
 | |
|         else
 | |
|             return success;
 | |
|     }
 | |
| 
 | |
|     /** \brief Resets the internal state of the stepper */
 | |
|     void reset()
 | |
|     {
 | |
|         m_first = true;
 | |
|         m_last_step_rejected = false;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Resizer methods */
 | |
| 
 | |
|     template< class StateIn >
 | |
|     void adjust_size( const StateIn &x )
 | |
|     {
 | |
|         resize_m_dxdt( x );
 | |
|         resize_m_xnew( x );
 | |
|         resize_impl( x );
 | |
|         m_midpoint.adjust_size( x );
 | |
|     }
 | |
| 
 | |
| 
 | |
| private:
 | |
| 
 | |
|     template< class StateIn >
 | |
|     bool resize_m_dxdt( const StateIn &x )
 | |
|     {
 | |
|         return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
 | |
|     }
 | |
| 
 | |
|     template< class StateIn >
 | |
|     bool resize_m_xnew( const StateIn &x )
 | |
|     {
 | |
|         return adjust_size_by_resizeability( m_xnew , x , typename is_resizeable<state_type>::type() );
 | |
|     }
 | |
| 
 | |
|     template< class StateIn >
 | |
|     bool resize_impl( const StateIn &x )
 | |
|     {
 | |
|         bool resized( false );
 | |
|         for( size_t i = 0 ; i < m_k_max ; ++i )
 | |
|             resized |= adjust_size_by_resizeability( m_table[i] , x , typename is_resizeable<state_type>::type() );
 | |
|         resized |= adjust_size_by_resizeability( m_err , x , typename is_resizeable<state_type>::type() );
 | |
|         return resized;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     template< class System , class StateInOut >
 | |
|     controlled_step_result try_step_v1( System system , StateInOut &x , time_type &t , time_type &dt )
 | |
|     {
 | |
|         typename odeint::unwrap_reference< System >::type &sys = system;
 | |
|         m_dxdt_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateInOut > , detail::ref( *this ) , detail::_1 ) );
 | |
|         sys( x , m_dxdt.m_v ,t );
 | |
|         return try_step( system , x , m_dxdt.m_v , t , dt );
 | |
|     }
 | |
| 
 | |
| 
 | |
|     template< class StateInOut >
 | |
|     void extrapolate( size_t k , state_table_type &table , const value_matrix &coeff , StateInOut &xest )
 | |
|     /* polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf
 | |
|        uses the obtained intermediate results to extrapolate to dt->0 
 | |
|     */
 | |
|     {
 | |
|         static const value_type val1 = static_cast< value_type >( 1.0 );
 | |
|         for( int j=k-1 ; j>0 ; --j )
 | |
|         {
 | |
|             m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v ,
 | |
|                                  typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][j] , -coeff[k][j] ) );
 | |
|         }
 | |
|         m_algebra.for_each3( xest , table[0].m_v , xest ,
 | |
|                              typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][0] , -coeff[k][0]) );
 | |
|     }
 | |
| 
 | |
|     time_type calc_h_opt( time_type h , value_type error , size_t k ) const
 | |
|     /* calculates the optimal step size for a given error and stage number */
 | |
|     {
 | |
|         BOOST_USING_STD_MIN();
 | |
|         BOOST_USING_STD_MAX();
 | |
|         using std::pow;
 | |
|         value_type expo( 1.0/(2*k+1) );
 | |
|         value_type facmin = pow BOOST_PREVENT_MACRO_SUBSTITUTION( STEPFAC3 , expo );
 | |
|         value_type fac;
 | |
|         if (error == 0.0)
 | |
|             fac=1.0/facmin;
 | |
|         else
 | |
|         {
 | |
|             fac = STEPFAC2 / pow BOOST_PREVENT_MACRO_SUBSTITUTION( error / STEPFAC1 , expo );
 | |
|             fac = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(facmin/STEPFAC4) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(1.0/facmin) , fac ) );
 | |
|         }
 | |
|         return h*fac;
 | |
|     }
 | |
| 
 | |
|     controlled_step_result set_k_opt( size_t k , const inv_time_vector &work , const time_vector &h_opt , time_type &dt )
 | |
|     /* calculates the optimal stage number */
 | |
|     {
 | |
|         if( k == 1 )
 | |
|         {
 | |
|             m_current_k_opt = 2;
 | |
|             return success;
 | |
|         }
 | |
|         if( (work[k-1] < KFAC1*work[k]) || (k == m_k_max) )
 | |
|         {   // order decrease
 | |
|             m_current_k_opt = k-1;
 | |
|             dt = h_opt[ m_current_k_opt ];
 | |
|             return success;
 | |
|         }
 | |
|         else if( (work[k] < KFAC2*work[k-1]) || m_last_step_rejected || (k == m_k_max-1) )
 | |
|         {   // same order - also do this if last step got rejected
 | |
|             m_current_k_opt = k;
 | |
|             dt = h_opt[ m_current_k_opt ];
 | |
|             return success;
 | |
|         }
 | |
|         else
 | |
|         {   // order increase - only if last step was not rejected
 | |
|             m_current_k_opt = k+1;
 | |
|             dt = h_opt[ m_current_k_opt-1 ] * m_cost[ m_current_k_opt ] / m_cost[ m_current_k_opt-1 ] ;
 | |
|             return success;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool in_convergence_window( size_t k ) const
 | |
|     {
 | |
|         if( (k == m_current_k_opt-1) && !m_last_step_rejected )
 | |
|             return true; // decrease stepsize only if last step was not rejected
 | |
|         return ( (k == m_current_k_opt) || (k == m_current_k_opt+1) );
 | |
|     }
 | |
| 
 | |
|     bool should_reject( value_type error , size_t k ) const
 | |
|     {
 | |
|         if( k == m_current_k_opt-1 )
 | |
|         {
 | |
|             const value_type d = m_interval_sequence[m_current_k_opt] * m_interval_sequence[m_current_k_opt+1] /
 | |
|                 (m_interval_sequence[0]*m_interval_sequence[0]);
 | |
|             //step will fail, criterion 17.3.17 in NR
 | |
|             return ( error > d*d );
 | |
|         }
 | |
|         else if( k == m_current_k_opt )
 | |
|         {
 | |
|             const value_type d = m_interval_sequence[m_current_k_opt] / m_interval_sequence[0];
 | |
|             return ( error > d*d );
 | |
|         } else
 | |
|             return error > 1.0;
 | |
|     }
 | |
| 
 | |
|     default_error_checker< value_type, algebra_type , operations_type > m_error_checker;
 | |
|     modified_midpoint< state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type > m_midpoint;
 | |
| 
 | |
|     bool m_last_step_rejected;
 | |
|     bool m_first;
 | |
| 
 | |
|     time_type m_dt_last;
 | |
|     time_type m_t_last;
 | |
|     time_type m_max_dt;
 | |
| 
 | |
|     size_t m_current_k_opt;
 | |
| 
 | |
|     algebra_type m_algebra;
 | |
| 
 | |
|     resizer_type m_dxdt_resizer;
 | |
|     resizer_type m_xnew_resizer;
 | |
|     resizer_type m_resizer;
 | |
| 
 | |
|     wrapped_state_type m_xnew;
 | |
|     wrapped_state_type m_err;
 | |
|     wrapped_deriv_type m_dxdt;
 | |
| 
 | |
|     int_vector m_interval_sequence; // stores the successive interval counts
 | |
|     value_matrix m_coeff;
 | |
|     int_vector m_cost; // costs for interval count
 | |
| 
 | |
|     state_table_type m_table; // sequence of states for extrapolation
 | |
| 
 | |
|     value_type STEPFAC1 , STEPFAC2 , STEPFAC3 , STEPFAC4 , KFAC1 , KFAC2;
 | |
| };
 | |
| 
 | |
| 
 | |
| /******** DOXYGEN ********/
 | |
| /**
 | |
|  * \class bulirsch_stoer
 | |
|  * \brief The Bulirsch-Stoer algorithm.
 | |
|  * 
 | |
|  * The Bulirsch-Stoer is a controlled stepper that adjusts both step size
 | |
|  * and order of the method. The algorithm uses the modified midpoint and
 | |
|  * a polynomial extrapolation compute the solution.
 | |
|  *
 | |
|  * \tparam State The state type.
 | |
|  * \tparam Value The value type.
 | |
|  * \tparam Deriv The type representing the time derivative of the state.
 | |
|  * \tparam Time The time representing the independent variable - the time.
 | |
|  * \tparam Algebra The algebra type.
 | |
|  * \tparam Operations The operations type.
 | |
|  * \tparam Resizer The resizer policy type.
 | |
|  */
 | |
| 
 | |
|     /**
 | |
|      * \fn bulirsch_stoer::bulirsch_stoer( value_type eps_abs , value_type eps_rel , value_type factor_x , value_type factor_dxdt )
 | |
|      * \brief Constructs the bulirsch_stoer class, including initialization of 
 | |
|      * the error bounds.
 | |
|      *
 | |
|      * \param eps_abs Absolute tolerance level.
 | |
|      * \param eps_rel Relative tolerance level.
 | |
|      * \param factor_x Factor for the weight of the state.
 | |
|      * \param factor_dxdt Factor for the weight of the derivative.
 | |
|      */
 | |
| 
 | |
|     /**
 | |
|      * \fn bulirsch_stoer::try_step( System system , StateInOut &x , time_type &t , time_type &dt )
 | |
|      * \brief Tries to perform one step.
 | |
|      *
 | |
|      * This method tries to do one step with step size dt. If the error estimate
 | |
|      * is to large, the step is rejected and the method returns fail and the 
 | |
|      * step size dt is reduced. If the error estimate is acceptably small, the
 | |
|      * step is performed, success is returned and dt might be increased to make 
 | |
|      * the steps as large as possible. This method also updates t if a step is
 | |
|      * performed. Also, the internal order of the stepper is adjusted if required.
 | |
|      *
 | |
|      * \param system The system function to solve, hence the r.h.s. of the ODE. 
 | |
|      * It must fulfill the Simple System concept.
 | |
|      * \param x The state of the ODE which should be solved. Overwritten if 
 | |
|      * the step is successful.
 | |
|      * \param t The value of the time. Updated if the step is successful.
 | |
|      * \param dt The step size. Updated.
 | |
|      * \return success if the step was accepted, fail otherwise.
 | |
|      */
 | |
| 
 | |
|     /**
 | |
|      * \fn bulirsch_stoer::try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt )
 | |
|      * \brief Tries to perform one step.
 | |
|      *
 | |
|      * This method tries to do one step with step size dt. If the error estimate
 | |
|      * is to large, the step is rejected and the method returns fail and the 
 | |
|      * step size dt is reduced. If the error estimate is acceptably small, the
 | |
|      * step is performed, success is returned and dt might be increased to make 
 | |
|      * the steps as large as possible. This method also updates t if a step is
 | |
|      * performed. Also, the internal order of the stepper is adjusted if required.
 | |
|      *
 | |
|      * \param system The system function to solve, hence the r.h.s. of the ODE. 
 | |
|      * It must fulfill the Simple System concept.
 | |
|      * \param x The state of the ODE which should be solved. Overwritten if 
 | |
|      * the step is successful.
 | |
|      * \param dxdt The derivative of state.
 | |
|      * \param t The value of the time. Updated if the step is successful.
 | |
|      * \param dt The step size. Updated.
 | |
|      * \return success if the step was accepted, fail otherwise.
 | |
|      */
 | |
| 
 | |
|     /**
 | |
|      * \fn bulirsch_stoer::try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt )
 | |
|      * \brief Tries to perform one step.
 | |
|      *
 | |
|      * \note This method is disabled if state_type=time_type to avoid ambiguity.
 | |
|      *
 | |
|      * This method tries to do one step with step size dt. If the error estimate
 | |
|      * is to large, the step is rejected and the method returns fail and the 
 | |
|      * step size dt is reduced. If the error estimate is acceptably small, the
 | |
|      * step is performed, success is returned and dt might be increased to make 
 | |
|      * the steps as large as possible. This method also updates t if a step is
 | |
|      * performed. Also, the internal order of the stepper is adjusted if required.
 | |
|      *
 | |
|      * \param system The system function to solve, hence the r.h.s. of the ODE. 
 | |
|      * It must fulfill the Simple System concept.
 | |
|      * \param in The state of the ODE which should be solved.
 | |
|      * \param t The value of the time. Updated if the step is successful.
 | |
|      * \param out Used to store the result of the step.
 | |
|      * \param dt The step size. Updated.
 | |
|      * \return success if the step was accepted, fail otherwise.
 | |
|      */
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * \fn bulirsch_stoer::try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt )
 | |
|      * \brief Tries to perform one step.
 | |
|      *
 | |
|      * This method tries to do one step with step size dt. If the error estimate
 | |
|      * is to large, the step is rejected and the method returns fail and the 
 | |
|      * step size dt is reduced. If the error estimate is acceptably small, the
 | |
|      * step is performed, success is returned and dt might be increased to make 
 | |
|      * the steps as large as possible. This method also updates t if a step is
 | |
|      * performed. Also, the internal order of the stepper is adjusted if required.
 | |
|      *
 | |
|      * \param system The system function to solve, hence the r.h.s. of the ODE. 
 | |
|      * It must fulfill the Simple System concept.
 | |
|      * \param in The state of the ODE which should be solved.
 | |
|      * \param dxdt The derivative of state.
 | |
|      * \param t The value of the time. Updated if the step is successful.
 | |
|      * \param out Used to store the result of the step.
 | |
|      * \param dt The step size. Updated.
 | |
|      * \return success if the step was accepted, fail otherwise.
 | |
|      */
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * \fn bulirsch_stoer::adjust_size( const StateIn &x )
 | |
|      * \brief Adjust the size of all temporaries in the stepper manually.
 | |
|      * \param x A state from which the size of the temporaries to be resized is deduced.
 | |
|      */
 | |
| 
 | |
| }
 | |
| }
 | |
| }
 | |
| 
 | |
| #endif // BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
 | 
